Abstract
The products of hexavalent chromium [Cr(VI)] reduction by glutathione (GSH) alone or in the presence of equimolar quantities of aspartate (Asp) and/or glutamate (Glu) and a chromium-containing material extracted from bovine liver were studied by ultraviolet-visible spectrum (UV-vis) studies, electrospray mass spectrometry (ES-MS), electron paramagnetic resonance (EPR), and nuclear magnetic resonance (NMR). Reduction of chromate by GSH was followed by UV-vis and NMR, revealing the formation of a paramagnetic complex in which GSH acts as a ligand. ES-MS and EPR measurements provided unequivocal evidence of a dimeric Cr(V)(2)GSH(2) species in which the two metal ions are bridged by the Gamma-Glu carboxylate. The analysis of the (1)H and (13)C shifts experienced by GSH protons and the values of paramagnetic contributions to proton spin-lattice relaxation rates provided a set of constraints for structural determination. The same experiments were repeated in the presence of an equimolar concentration of Asp, revealing the formation of a dimeric Cr(V) paramagnetic complex in which the two metals are now bridged by Asp. Nuclear magnetic resonance dispersion profiles show that water is not displaced by Asp and that the correlation time of this complex is slowed by the increased complexity. When Glu is also included in the solution in equimolar concentration to GSH and Asp, data are consistent with the formation of many mono- and dinuclear species, with the three ligands competing with each other. Finally, the spectroscopic investigation of the chromium-containing material extracted from bovine liver revealed the presence of a complicate mixture of Cr(IV) or Cr(V) complexes, among which some Cr(V)-GSH species are present alone or with other ligands in the metal coordination sphere.
Full Text
The Full Text of this article is available as a PDF (442.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anderson R. A., Bryden N. A., Polansky M. M. Lack of toxicity of chromium chloride and chromium picolinate in rats. J Am Coll Nutr. 1997 Jun;16(3):273–279. doi: 10.1080/07315724.1997.10718685. [DOI] [PubMed] [Google Scholar]
- Anderson R. A. Nutritional factors influencing the glucose/insulin system: chromium. J Am Coll Nutr. 1997 Oct;16(5):404–410. doi: 10.1080/07315724.1997.10718705. [DOI] [PubMed] [Google Scholar]
- Anderson R. A., Polansky M. M., Bryden N. A., Roginski E. E., Mertz W., Glinsmann W. Chromium supplementation of human subjects: effects on glucose, insulin, and lipid variables. Metabolism. 1983 Sep;32(9):894–899. doi: 10.1016/0026-0495(83)90203-2. [DOI] [PubMed] [Google Scholar]
- Davis C. M., Sumrall K. H., Vincent J. B. A biologically active form of chromium may activate a membrane phosphotyrosine phosphatase (PTP). Biochemistry. 1996 Oct 1;35(39):12963–12969. doi: 10.1021/bi960328y. [DOI] [PubMed] [Google Scholar]
- Davis C. M., Vincent J. B. Chromium oligopeptide activates insulin receptor tyrosine kinase activity. Biochemistry. 1997 Apr 15;36(15):4382–4385. doi: 10.1021/bi963154t. [DOI] [PubMed] [Google Scholar]
- Davis C. M., Vincent J. B. Isolation and characterization of a biologically active chromium oligopeptide from bovine liver. Arch Biochem Biophys. 1997 Mar 15;339(2):335–343. doi: 10.1006/abbi.1997.9878. [DOI] [PubMed] [Google Scholar]
- Evans G. W., Bowman T. D. Chromium picolinate increases membrane fluidity and rate of insulin internalization. J Inorg Biochem. 1992 Jun;46(4):243–250. doi: 10.1016/0162-0134(92)80034-s. [DOI] [PubMed] [Google Scholar]
- Gaggelli E., Berti F., Gaggelli N., Maccotta A., Valensin G. A homodinuclear Cr(V)-Cr(V) complex forms from the chromate-glutathione reaction in water. J Am Chem Soc. 2001 Sep 12;123(36):8858–8859. doi: 10.1021/ja004327b. [DOI] [PubMed] [Google Scholar]
- Hamilton J. W., Wetterhahn K. E. Chromium (VI)-induced DNA damage in chick embryo liver and blood cells in vivo. Carcinogenesis. 1986 Dec;7(12):2085–2088. doi: 10.1093/carcin/7.12.2085. [DOI] [PubMed] [Google Scholar]
- Kawanishi S., Inoue S., Sano S. Mechanism of DNA cleavage induced by sodium chromate(VI) in the presence of hydrogen peroxide. J Biol Chem. 1986 May 5;261(13):5952–5958. [PubMed] [Google Scholar]
- Miller C. A., 3rd, Cohen M. D., Costa M. Complexing of actin and other nuclear proteins to DNA by cis-diamminedichloroplatinum(II) and chromium compounds. Carcinogenesis. 1991 Feb;12(2):269–276. doi: 10.1093/carcin/12.2.269. [DOI] [PubMed] [Google Scholar]
- Shi X. G., Dalal N. S. On the hydroxyl radical formation in the reaction between hydrogen peroxide and biologically generated chromium(V) species. Arch Biochem Biophys. 1990 Mar;277(2):342–350. doi: 10.1016/0003-9861(90)90589-q. [DOI] [PubMed] [Google Scholar]
- Shi X. L., Dalal N. S. On the mechanism of the chromate reduction by glutathione: ESR evidence for the glutathionyl radical and an isolable Cr(V) intermediate. Biochem Biophys Res Commun. 1988 Oct 14;156(1):137–142. doi: 10.1016/s0006-291x(88)80815-5. [DOI] [PubMed] [Google Scholar]
- Shi X., Dong Z., Dalal N. S., Gannett P. M. Chromate-mediated free radical generation from cysteine, penicillamine, hydrogen peroxide, and lipid hydroperoxides. Biochim Biophys Acta. 1994 Apr 12;1226(1):65–72. doi: 10.1016/0925-4439(94)90060-4. [DOI] [PubMed] [Google Scholar]
- Speetjens J. K., Collins R. A., Vincent J. B., Woski S. A. The nutritional supplement chromium(III) tris(picolinate) cleaves DNA. Chem Res Toxicol. 1999 Jun;12(6):483–487. doi: 10.1021/tx9900167. [DOI] [PubMed] [Google Scholar]
- Sugden K. D., Wetterhahn K. E. Direct and hydrogen peroxide-induced chromium(V) oxidation of deoxyribose in single-stranded and double-stranded calf thymus DNA. Chem Res Toxicol. 1997 Dec;10(12):1397–1406. doi: 10.1021/tx970135r. [DOI] [PubMed] [Google Scholar]
- Sun Y., Ramirez J., Woski S. A., Vincent J. B. The binding of trivalent chromium to low-molecular-weight chromium-binding substance (LMWCr) and the transfer of chromium from transferrin and chromium picolinate to LMWCr. J Biol Inorg Chem. 2000 Feb;5(1):129–136. doi: 10.1007/s007750050016. [DOI] [PubMed] [Google Scholar]
- Toepfer E. W., Mertz W., Polansky M. M., Roginski E. E., Wolf W. R. Preparation of chromium-containing material of glucose tolerance factor activity from brewer's yeast extracts and by synthesis. J Agric Food Chem. 1976 Jan-Feb;25(1):162–166. doi: 10.1021/jf60209a056. [DOI] [PubMed] [Google Scholar]
- Vincent J. B. Elucidating a biological role for chromium at a molecular level. Acc Chem Res. 2000 Jul;33(7):503–510. doi: 10.1021/ar990073r. [DOI] [PubMed] [Google Scholar]
- Vincent J. B. Mechanisms of chromium action: low-molecular-weight chromium-binding substance. J Am Coll Nutr. 1999 Feb;18(1):6–12. doi: 10.1080/07315724.1999.10718821. [DOI] [PubMed] [Google Scholar]
- Vincent J. B. The biochemistry of chromium. J Nutr. 2000 Apr;130(4):715–718. doi: 10.1093/jn/130.4.715. [DOI] [PubMed] [Google Scholar]
- Voitkun V., Zhitkovich A., Costa M. Cr(III)-mediated crosslinks of glutathione or amino acids to the DNA phosphate backbone are mutagenic in human cells. Nucleic Acids Res. 1998 Apr 15;26(8):2024–2030. doi: 10.1093/nar/26.8.2024. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wada O., Wu G. Y., Yamamoto A., Manabe S., Ono T. Purification and chromium-excretory function of low-molecular-weight, chromium-binding substances from dog liver. Environ Res. 1983 Oct;32(1):228–239. doi: 10.1016/0013-9351(83)90210-4. [DOI] [PubMed] [Google Scholar]
- Wiegand H. J., Ottenwälder H., Bolt H. M. Recent advances in biological monitoring of hexavalent chromium compounds. Sci Total Environ. 1988 Jun 1;71(3):309–315. doi: 10.1016/0048-9697(88)90202-1. [DOI] [PubMed] [Google Scholar]
- Yamamoto A., Wada O., Manabe S. Evidence that chromium is an essential factor for biological activity of low-molecular-weight, chromium-binding substance. Biochem Biophys Res Commun. 1989 Aug 30;163(1):189–193. doi: 10.1016/0006-291x(89)92119-0. [DOI] [PubMed] [Google Scholar]
- Yamamoto A., Wada O., Ono T. Distribution and chromium-binding capacity of a low-molecular-weight, chromium-binding substance in mice. J Inorg Biochem. 1984 Oct;22(2):91–102. doi: 10.1016/0162-0134(84)80018-5. [DOI] [PubMed] [Google Scholar]
- Yamamoto A., Wada O., Ono T. Isolation of a biologically active low-molecular-mass chromium compound from rabbit liver. Eur J Biochem. 1987 Jun 15;165(3):627–631. doi: 10.1111/j.1432-1033.1987.tb11486.x. [DOI] [PubMed] [Google Scholar]
- Yamamoto A., Wada O., Suzuki H. Purification and properties of biologically active chromium complex from bovine colostrum. J Nutr. 1988 Jan;118(1):39–45. doi: 10.1093/jn/118.1.39. [DOI] [PubMed] [Google Scholar]
