Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 2002 Oct;110(Suppl 5):773–777. doi: 10.1289/ehp.02110s5773

Fanconi anemia complementation group A cells are hypersensitive to chromium(VI)-induced toxicity.

Susan K Vilcheck 1, Travis J O'Brien 1, Daryl E Pritchard 1, Linan Ha 1, Susan Ceryak 1, Jamie L Fornsaglio 1, Steven R Patierno 1
PMCID: PMC1241243  PMID: 12426130

Abstract

Fanconi anemia (FA) is an autosomal recessive disorder characterized by diverse developmental abnormalities, progressive bone marrow failure, and a markedly increased incidence of malignancy. FA cells are hypersensitive to DNA cross-linking agents, suggesting a general defect in the repair of DNA cross-links. Some forms of hexavalent chromium [Cr(VI)] are implicated as respiratory carcinogens and induce several types of DNA lesions, including ternary DNA-Cr-DNA interstrand cross-links (Cr-DDC). We hypothesized that human FA complementation group A (FA-A) cells would be hypersensitive to Cr(VI) and Cr(VI)-induced apoptosis. Using phosphatidylserine translocation and caspase-3 activation, human FA-A fibroblasts were found to be markedly hypersensitive to chromium-induced apoptosis compared with CRL-1634 cells, which are normal human foreskin fibroblasts (CRL). The clonogenicity of FA-A cells was also significantly decreased compared with CRL cells after Cr(VI) treatment. There was no significant difference in either Cr(VI) uptake or Cr-DNA adduct formation between FA-A and CRL cells. These results show that FA-A cells are hypersensitive to Cr(VI) and Cr-induced apoptosis and that this hypersensitivity is not due to increased Cr(VI) uptake or increased Cr-DNA adduct formation. The results also suggest that Cr-DDC may be proapoptotic lesions. These results are the first to show that FA cells are hypersensitive to an environmentally relevant DNA cross-linking agent.

Full Text

The Full Text of this article is available as a PDF (156.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Auerbach A. D. Fanconi anemia diagnosis and the diepoxybutane (DEB) test. Exp Hematol. 1993 Jun;21(6):731–733. [PubMed] [Google Scholar]
  2. Blankenship L. J., Carlisle D. L., Wise J. P., Orenstein J. M., Dye L. E., 3rd, Patierno S. R. Induction of apoptotic cell death by particulate lead chromate: differential effects of vitamins C and E on genotoxicity and survival. Toxicol Appl Pharmacol. 1997 Oct;146(2):270–280. doi: 10.1006/taap.1997.8237. [DOI] [PubMed] [Google Scholar]
  3. Bridgewater L. C., Manning F. C., Patierno S. R. Base-specific arrest of in vitro DNA replication by carcinogenic chromium: relationship to DNA interstrand crosslinking. Carcinogenesis. 1994 Nov;15(11):2421–2427. doi: 10.1093/carcin/15.11.2421. [DOI] [PubMed] [Google Scholar]
  4. Bridgewater L. C., Manning F. C., Woo E. S., Patierno S. R. DNA polymerase arrest by adducted trivalent chromium. Mol Carcinog. 1994 Mar;9(3):122–133. doi: 10.1002/mc.2940090304. [DOI] [PubMed] [Google Scholar]
  5. Buchwald M., Moustacchi E. Is Fanconi anemia caused by a defect in the processing of DNA damage? Mutat Res. 1998 Aug 7;408(2):75–90. doi: 10.1016/s0921-8777(98)00024-x. [DOI] [PubMed] [Google Scholar]
  6. Burke T., Fagliano J., Goldoft M., Hazen R. E., Iglewicz R., McKee T. Chromite ore processing residue in Hudson County, New Jersey. Environ Health Perspect. 1991 May;92:131–137. doi: 10.1289/ehp.9192131. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Carlisle D. L., Pritchard D. E., Singh J., Owens B. M., Blankenship L. J., Orenstein J. M., Patierno S. R. Apoptosis and P53 induction in human lung fibroblasts exposed to chromium (VI): effect of ascorbate and tocopherol. Toxicol Sci. 2000 May;55(1):60–68. doi: 10.1093/toxsci/55.1.60. [DOI] [PubMed] [Google Scholar]
  8. Carlisle D. L., Pritchard D. E., Singh J., Patierno S. R. Chromium(VI) induces p53-dependent apoptosis in diploid human lung and mouse dermal fibroblasts. Mol Carcinog. 2000 Jun;28(2):111–118. doi: 10.1002/1098-2744(200006)28:2<111::aid-mc7>3.0.co;2-y. [DOI] [PubMed] [Google Scholar]
  9. Cupo D. Y., Wetterhahn K. E. Repair of chromate-induced DNA damage in chick embryo hepatocytes. Carcinogenesis. 1984 Dec;5(12):1705–1708. doi: 10.1093/carcin/5.12.1705. [DOI] [PubMed] [Google Scholar]
  10. D'Andrea A. D., Grompe M. Molecular biology of Fanconi anemia: implications for diagnosis and therapy. Blood. 1997 Sep 1;90(5):1725–1736. [PubMed] [Google Scholar]
  11. De Flora S., Bagnasco M., Serra D., Zanacchi P. Genotoxicity of chromium compounds. A review. Mutat Res. 1990 Mar;238(2):99–172. doi: 10.1016/0165-1110(90)90007-x. [DOI] [PubMed] [Google Scholar]
  12. Evan G., Littlewood T. A matter of life and cell death. Science. 1998 Aug 28;281(5381):1317–1322. doi: 10.1126/science.281.5381.1317. [DOI] [PubMed] [Google Scholar]
  13. Fornace A. J., Jr, Seres D. S., Lechner J. F., Harris C. C. DNA-protein cross-linking by chromium salts. Chem Biol Interact. 1981 Sep;36(3):345–354. doi: 10.1016/0009-2797(81)90077-6. [DOI] [PubMed] [Google Scholar]
  14. Freeman N. C., Stern A. H., Lioy P. J. Exposure to chromium dust from homes in a Chromium Surveillance Project. Arch Environ Health. 1997 May-Jun;52(3):213–219. doi: 10.1080/00039899709602889. [DOI] [PubMed] [Google Scholar]
  15. Goldberg Y. P., Nicholson D. W., Rasper D. M., Kalchman M. A., Koide H. B., Graham R. K., Bromm M., Kazemi-Esfarjani P., Thornberry N. A., Vaillancourt J. P. Cleavage of huntingtin by apopain, a proapoptotic cysteine protease, is modulated by the polyglutamine tract. Nat Genet. 1996 Aug;13(4):442–449. doi: 10.1038/ng0896-442. [DOI] [PubMed] [Google Scholar]
  16. Ishikawa Y., Nakagawa K., Satoh Y., Kitagawa T., Sugano H., Hirano T., Tsuchiya E. "Hot spots" of chromium accumulation at bifurcations of chromate workers' bronchi. Cancer Res. 1994 May 1;54(9):2342–2346. [PubMed] [Google Scholar]
  17. Kuida K., Zheng T. S., Na S., Kuan C., Yang D., Karasuyama H., Rakic P., Flavell R. A. Decreased apoptosis in the brain and premature lethality in CPP32-deficient mice. Nature. 1996 Nov 28;384(6607):368–372. doi: 10.1038/384368a0. [DOI] [PubMed] [Google Scholar]
  18. Léonard A. Mechanisms in metal genotoxicity: the significance of in vitro approaches. Mutat Res. 1988 Apr;198(2):321–326. doi: 10.1016/0027-5107(88)90009-7. [DOI] [PubMed] [Google Scholar]
  19. Manning F. C., Xu J., Patierno S. R. Transcriptional inhibition by carcinogenic chromate: relationship to DNA damage. Mol Carcinog. 1992;6(4):270–279. doi: 10.1002/mc.2940060409. [DOI] [PubMed] [Google Scholar]
  20. Martin S. J., Reutelingsperger C. P., McGahon A. J., Rader J. A., van Schie R. C., LaFace D. M., Green D. R. Early redistribution of plasma membrane phosphatidylserine is a general feature of apoptosis regardless of the initiating stimulus: inhibition by overexpression of Bcl-2 and Abl. J Exp Med. 1995 Nov 1;182(5):1545–1556. doi: 10.1084/jem.182.5.1545. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Miller C. A., 3rd, Cohen M. D., Costa M. Complexing of actin and other nuclear proteins to DNA by cis-diamminedichloroplatinum(II) and chromium compounds. Carcinogenesis. 1991 Feb;12(2):269–276. doi: 10.1093/carcin/12.2.269. [DOI] [PubMed] [Google Scholar]
  22. Miller C. A., 3rd, Costa M. Characterization of DNA-protein complexes induced in intact cells by the carcinogen chromate. Mol Carcinog. 1988;1(2):125–133. doi: 10.1002/mc.2940010208. [DOI] [PubMed] [Google Scholar]
  23. Montaldi A., Zentilin L., Paglialunga S., Levis A. G. Solubilization by nitrilotriacetic acid (NTA) of genetically active Cr(VI) and Pb(II) from insoluble metal compounds. J Toxicol Environ Health. 1987;21(3):387–394. doi: 10.1080/15287398709531027. [DOI] [PubMed] [Google Scholar]
  24. Nasir J., Goldberg Y. P., Hayden M. R. Huntington disease: new insights into the relationship between CAG expansion and disease. Hum Mol Genet. 1996;5(Spec No):1431–1435. doi: 10.1093/hmg/5.supplement_1.1431. [DOI] [PubMed] [Google Scholar]
  25. Nicholson D. W., Ali A., Thornberry N. A., Vaillancourt J. P., Ding C. K., Gallant M., Gareau Y., Griffin P. R., Labelle M., Lazebnik Y. A. Identification and inhibition of the ICE/CED-3 protease necessary for mammalian apoptosis. Nature. 1995 Jul 6;376(6535):37–43. doi: 10.1038/376037a0. [DOI] [PubMed] [Google Scholar]
  26. O'Brien T., Xu J., Patierno S. R. Effects of glutathione on chromium-induced DNA crosslinking and DNA polymerase arrest. Mol Cell Biochem. 2001 Jun;222(1-2):173–182. [PubMed] [Google Scholar]
  27. Patierno S. R., Banh D., Landolph J. R. Transformation of C3H/10T1/2 mouse embryo cells to focus formation and anchorage independence by insoluble lead chromate but not soluble calcium chromate: relationship to mutagenesis and internalization of lead chromate particles. Cancer Res. 1988 Sep 15;48(18):5280–5288. [PubMed] [Google Scholar]
  28. Pritchard D. E., Ceryak S., Ha L., Fornsaglio J. L., Hartman S. K., O'Brien T. J., Patierno S. R. Mechanism of apoptosis and determination of cellular fate in chromium(VI)-exposed populations of telomerase-immortalized human fibroblasts. Cell Growth Differ. 2001 Oct;12(10):487–496. [PubMed] [Google Scholar]
  29. Rotonda J., Nicholson D. W., Fazil K. M., Gallant M., Gareau Y., Labelle M., Peterson E. P., Rasper D. M., Ruel R., Vaillancourt J. P. The three-dimensional structure of apopain/CPP32, a key mediator of apoptosis. Nat Struct Biol. 1996 Jul;3(7):619–625. doi: 10.1038/nsb0796-619. [DOI] [PubMed] [Google Scholar]
  30. Sasaki M. S., Tonomura A. A high susceptibility of Fanconi's anemia to chromosome breakage by DNA cross-linking agents. Cancer Res. 1973 Aug;33(8):1829–1836. [PubMed] [Google Scholar]
  31. Singh J., Bridgewater L. C., Patierno S. R. Differential sensitivity of chromium-mediated DNA interstrand crosslinks and DNA-protein crosslinks to disruption by alkali and EDTA. Toxicol Sci. 1998 Sep;45(1):72–76. doi: 10.1006/toxs.1998.2489. [DOI] [PubMed] [Google Scholar]
  32. Standeven A. M., Wetterhahn K. E. Is there a role for reactive oxygen species in the mechanism of chromium(VI) carcinogenesis? Chem Res Toxicol. 1991 Nov-Dec;4(6):616–625. doi: 10.1021/tx00024a003. [DOI] [PubMed] [Google Scholar]
  33. Strathdee C. A., Buchwald M. Molecular and cellular biology of Fanconi anemia. Am J Pediatr Hematol Oncol. 1992 May;14(2):177–185. doi: 10.1097/00043426-199205000-00015. [DOI] [PubMed] [Google Scholar]
  34. Sugiyama M., Patierno S. R., Cantoni O., Costa M. Characterization of DNA lesions induced by CaCrO4 in synchronous and asynchronous cultured mammalian cells. Mol Pharmacol. 1986 Jun;29(6):606–613. [PubMed] [Google Scholar]
  35. Sugiyama M., Tsuzuki K., Ogura R. Effect of ascorbic acid on DNA damage, cytotoxicity, glutathione reductase, and formation of paramagnetic chromium in Chinese hamster V-79 cells treated with sodium chromate(VI). J Biol Chem. 1991 Feb 25;266(6):3383–3386. [PubMed] [Google Scholar]
  36. Sugiyama M., Wang X. W., Costa M. Comparison of DNA lesions and cytotoxicity induced by calcium chromate in human, mouse, and hamster cell lines. Cancer Res. 1986 Sep;46(9):4547–4551. [PubMed] [Google Scholar]
  37. Voitkun V., Zhitkovich A., Costa M. Cr(III)-mediated crosslinks of glutathione or amino acids to the DNA phosphate backbone are mutagenic in human cells. Nucleic Acids Res. 1998 Apr 15;26(8):2024–2030. doi: 10.1093/nar/26.8.2024. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Wise J. P., Leonard J. C., Patierno S. R. Clastogenicity of lead chromate particles in hamster and human cells. Mutat Res. 1992 Jan;278(1):69–79. doi: 10.1016/0165-1218(92)90287-a. [DOI] [PubMed] [Google Scholar]
  39. Wise J. P., Orenstein J. M., Patierno S. R. Inhibition of lead chromate clastogenesis by ascorbate: relationship to particle dissolution and uptake. Carcinogenesis. 1993 Mar;14(3):429–434. doi: 10.1093/carcin/14.3.429. [DOI] [PubMed] [Google Scholar]
  40. Wise J. P., Sr, Stearns D. M., Wetterhahn K. E., Patierno S. R. Cell-enhanced dissolution of carcinogenic lead chromate particles: the role of individual dissolution products in clastogenesis. Carcinogenesis. 1994 Oct;15(10):2249–2254. doi: 10.1093/carcin/15.10.2249. [DOI] [PubMed] [Google Scholar]
  41. Xu J., Bubley G. J., Detrick B., Blankenship L. J., Patierno S. R. Chromium(VI) treatment of normal human lung cells results in guanine-specific DNA polymerase arrest, DNA-DNA cross-links and S-phase blockade of cell cycle. Carcinogenesis. 1996 Jul;17(7):1511–1517. doi: 10.1093/carcin/17.7.1511. [DOI] [PubMed] [Google Scholar]
  42. Xu J., Manning F. C., Patierno S. R. Preferential formation and repair of chromium-induced DNA adducts and DNA--protein crosslinks in nuclear matrix DNA. Carcinogenesis. 1994 Jul;15(7):1443–1450. doi: 10.1093/carcin/15.7.1443. [DOI] [PubMed] [Google Scholar]
  43. Zhen W., Evans M. K., Haggerty C. M., Bohr V. A. Deficient gene specific repair of cisplatin-induced lesions in Xeroderma pigmentosum and Fanconi's anemia cell lines. Carcinogenesis. 1993 May;14(5):919–924. doi: 10.1093/carcin/14.5.919. [DOI] [PubMed] [Google Scholar]
  44. Zhitkovich A., Voitkun V., Costa M. Glutathione and free amino acids form stable complexes with DNA following exposure of intact mammalian cells to chromate. Carcinogenesis. 1995 Apr;16(4):907–913. doi: 10.1093/carcin/16.4.907. [DOI] [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES