Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 2002 Oct;110(Suppl 5):841–844. doi: 10.1289/ehp.02110s5841

Respiratory carcinogenicity assessment of soluble nickel compounds.

Adriana R Oller 1
PMCID: PMC1241257  PMID: 12426143

Abstract

The many chemical forms of nickel differ in physicochemical properties and biological effects. Health assessments for each main category of nickel species are needed. The carcinogenicity assessment of water-soluble nickel compounds has proven particularly difficult. Epidemiologic evidence indicates an association between inhalation exposures to nickel refinery dust containing soluble nickel compounds and increased risk of respiratory cancers. However, the nature of this association is unclear because of limitations of the exposure data, inconsistent results across cohorts, and the presence of mixed exposures to water-insoluble nickel compounds and other confounders that are known or suspected carcinogens. Moreover, well-conducted animal inhalation studies, where exposures were solely to soluble nickel, failed to demonstrate a carcinogenic potential. Similar negative results were seen in animal oral studies. A model exists that relates respiratory carcinogenic potential to the bioavailability of nickel ion at nuclear sites within respiratory target cells. This model helps reconcile human, animal, and mechanistic data for soluble nickel compounds. For inhalation exposures, the predicted lack of bioavailability of nickel ion at target sites suggests that water-soluble nickel compounds, by themselves, will not be complete human carcinogens. However, if inhaled at concentrations high enough to induce chronic lung inflammation, these compounds may enhance carcinogenic risks associated with inhalation exposure to other substances. Overall, the weight of evidence indicates that inhalation exposure to soluble nickel alone will not cause cancer; moreover, if exposures are kept below levels that cause chronic respiratory toxicity, any possible tumor-enhancing effects (particularly in smokers) would be avoided.

Full Text

The Full Text of this article is available as a PDF (138.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abbracchio M. P., Simmons-Hansen J., Costa M. Cytoplasmic dissolution of phagocytized crystalline nickel sulfide particles: a prerequisite for nuclear uptake of nickel. J Toxicol Environ Health. 1982 Apr;9(4):663–676. doi: 10.1080/15287398209530194. [DOI] [PubMed] [Google Scholar]
  2. Andersen A., Berge S. R., Engeland A., Norseth T. Exposure to nickel compounds and smoking in relation to incidence of lung and nasal cancer among nickel refinery workers. Occup Environ Med. 1996 Oct;53(10):708–713. doi: 10.1136/oem.53.10.708. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Andrew A. S., Klei L. R., Barchowsky A. Nickel requires hypoxia-inducible factor-1 alpha, not redox signaling, to induce plasminogen activator inhibitor-1. Am J Physiol Lung Cell Mol Physiol. 2001 Sep;281(3):L607–L615. doi: 10.1152/ajplung.2001.281.3.L607. [DOI] [PubMed] [Google Scholar]
  4. Anttila A., Pukkala E., Aitio A., Rantanen T., Karjalainen S. Update of cancer incidence among workers at a copper/nickel smelter and nickel refinery. Int Arch Occup Environ Health. 1998 Jun;71(4):245–250. doi: 10.1007/s004200050276. [DOI] [PubMed] [Google Scholar]
  5. Benson J. M., Chang I. Y., Cheng Y. S., Hahn F. F., Kennedy C. H., Barr E. B., Maples K. R., Snipes M. B. Particle clearance and histopathology in lungs of F344/N rats and B6C3F1 mice inhaling nickel oxide or nickel sulfate. Fundam Appl Toxicol. 1995 Dec;28(2):232–244. doi: 10.1006/faat.1995.1164. [DOI] [PubMed] [Google Scholar]
  6. Conway K., Wang X. W., Xu L. S., Costa M. Effect of magnesium on nickel-induced genotoxicity and cell transformation. Carcinogenesis. 1987 Aug;8(8):1115–1121. doi: 10.1093/carcin/8.8.1115. [DOI] [PubMed] [Google Scholar]
  7. Costa M., Abbracchio M. P., Simmons-Hansen J. Factors influencing the phagocytosis, neoplastic transformation, and cytotoxicity of particulate nickel compounds in tissue culture systems. Toxicol Appl Pharmacol. 1981 Sep 15;60(2):313–323. doi: 10.1016/0041-008x(91)90234-6. [DOI] [PubMed] [Google Scholar]
  8. Costa M. Molecular mechanisms of nickel carcinogenesis. Annu Rev Pharmacol Toxicol. 1991;31:321–337. doi: 10.1146/annurev.pa.31.040191.001541. [DOI] [PubMed] [Google Scholar]
  9. Costa M., Mollenhauer H. H. Carcinogenic activity of particulate nickel compounds is proportional to their cellular uptake. Science. 1980 Jul 25;209(4455):515–517. doi: 10.1126/science.7394519. [DOI] [PubMed] [Google Scholar]
  10. Diwan B. A., Kasprzak K. S., Rice J. M. Transplacental carcinogenic effects of nickel(II) acetate in the renal cortex, renal pelvis and adenohypophysis in F344/NCr rats. Carcinogenesis. 1992 Aug;13(8):1351–1357. doi: 10.1093/carcin/13.8.1351. [DOI] [PubMed] [Google Scholar]
  11. Dunnick J. K., Elwell M. R., Radovsky A. E., Benson J. M., Hahn F. F., Nikula K. J., Barr E. B., Hobbs C. H. Comparative carcinogenic effects of nickel subsulfide, nickel oxide, or nickel sulfate hexahydrate chronic exposures in the lung. Cancer Res. 1995 Nov 15;55(22):5251–5256. [PubMed] [Google Scholar]
  12. Fletcher G. G., Rossetto F. E., Turnbull J. D., Nieboer E. Toxicity, uptake, and mutagenicity of particulate and soluble nickel compounds. Environ Health Perspect. 1994 Sep;102 (Suppl 3):69–79. doi: 10.1289/ehp.94102s369. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. GILMAN J. P. Metal carcinogenesis. II. A study on the carcinogenic activity of cobalt, copper, iron, and nickel compounds. Cancer Res. 1962 Feb;22:158–162. [PubMed] [Google Scholar]
  14. Ghezzi I., Baldasseroni A., Sesana G., Boni C., Cortona G., Alessio L. Behaviour of urinary nickel in low-level occupational exposure. Med Lav. 1989 May-Jun;80(3):244–250. [PubMed] [Google Scholar]
  15. Haber L. T., Diamond G. L., Zhao Q., Erdreich L., Dourson M. L. Hazard identification and dose response of ingested nickel-soluble salts. Regul Toxicol Pharmacol. 2000 Apr;31(2 Pt 1):231–241. doi: 10.1006/rtph.2000.1378. [DOI] [PubMed] [Google Scholar]
  16. Haber L. T., Erdreicht L., Diamond G. L., Maier A. M., Ratney R., Zhao Q., Dourson M. L. Hazard identification and dose response of inhaled nickel-soluble salts. Regul Toxicol Pharmacol. 2000 Apr;31(2 Pt 1):210–230. doi: 10.1006/rtph.2000.1377. [DOI] [PubMed] [Google Scholar]
  17. Ho V. T., Bunn H. F. Effects of transition metals on the expression of the erythropoietin gene: further evidence that the oxygen sensor is a heme protein. Biochem Biophys Res Commun. 1996 Jun 5;223(1):175–180. doi: 10.1006/bbrc.1996.0865. [DOI] [PubMed] [Google Scholar]
  18. Kasprzak K. S., Diwan B. A., Konishi N., Misra M., Rice J. M. Initiation by nickel acetate and promotion by sodium barbital of renal cortical epithelial tumors in male F344 rats. Carcinogenesis. 1990 Apr;11(4):647–652. doi: 10.1093/carcin/11.4.647. [DOI] [PubMed] [Google Scholar]
  19. Kasprzak K. S., Gabryel P., Jarczewska K. Carcinogenicity of nickel(II)hydroxides and nickel(II)sulfate in Wistar rats and its relation to the in vitro dissolution rates. Carcinogenesis. 1983;4(3):275–279. doi: 10.1093/carcin/4.3.275. [DOI] [PubMed] [Google Scholar]
  20. Miura T., Patierno S. R., Sakuramoto T., Landolph J. R. Morphological and neoplastic transformation of C3H/10T1/2 Cl 8 mouse embryo cells by insoluble carcinogenic nickel compounds. Environ Mol Mutagen. 1989;14(2):65–78. doi: 10.1002/em.2850140202. [DOI] [PubMed] [Google Scholar]
  21. Oller A. R., Costa M., Oberdörster G. Carcinogenicity assessment of selected nickel compounds. Toxicol Appl Pharmacol. 1997 Mar;143(1):152–166. doi: 10.1006/taap.1996.8075. [DOI] [PubMed] [Google Scholar]
  22. Pang D., Burges D. C., Sorahan T. Mortality study of nickel platers with special reference to cancers of the stomach and lung, 1945-93. Occup Environ Med. 1996 Oct;53(10):714–717. doi: 10.1136/oem.53.10.714. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Roberts R. S., Julian J. A., Muir D. C., Shannon H. S. A study of mortality in workers engaged in the mining, smelting, and refining of nickel. II: Mortality from cancer of the respiratory tract and kidney. Toxicol Ind Health. 1989 Dec;5(6):975–993. doi: 10.1177/074823378900500606. [DOI] [PubMed] [Google Scholar]
  24. Salnikow K., An W. G., Melillo G., Blagosklonny M. V., Costa M. Nickel-induced transformation shifts the balance between HIF-1 and p53 transcription factors. Carcinogenesis. 1999 Sep;20(9):1819–1823. doi: 10.1093/carcin/20.9.1819. [DOI] [PubMed] [Google Scholar]
  25. Salnikow K., Costa M. Epigenetic mechanisms of nickel carcinogenesis. J Environ Pathol Toxicol Oncol. 2000;19(3):307–318. [PubMed] [Google Scholar]
  26. Salnikow K., Wang S., Costa M. Induction of activating transcription factor 1 by nickel and its role as a negative regulator of thrombospondin I gene expression. Cancer Res. 1997 Nov 15;57(22):5060–5066. [PubMed] [Google Scholar]
  27. Schroeder H. A., Mitchener M. Life-term effects of mercury, methyl mercury, and nine other trace metals on mice. J Nutr. 1975 Apr;105(4):452–458. doi: 10.1093/jn/105.4.452. [DOI] [PubMed] [Google Scholar]
  28. Schroeder H. A., Mitchener M., Nason A. P. Life-term effects of nickel in rats: survival, tumors, interactions with trace elements and tissue levels. J Nutr. 1974 Feb;104(2):239–243. doi: 10.1093/jn/104.2.239. [DOI] [PubMed] [Google Scholar]
  29. Sen P., Costa M. Pathway of nickel uptake influences its interaction with heterochromatic DNA. Toxicol Appl Pharmacol. 1986 Jun 30;84(2):278–285. doi: 10.1016/0041-008x(86)90135-3. [DOI] [PubMed] [Google Scholar]
  30. Steinbrech D. S., Mehrara B. J., Saadeh P. B., Greenwald J. A., Spector J. A., Gittes G. K., Longaker M. T. VEGF expression in an osteoblast-like cell line is regulated by a hypoxia response mechanism. Am J Physiol Cell Physiol. 2000 Apr;278(4):C853–C860. doi: 10.1152/ajpcell.2000.278.4.C853. [DOI] [PubMed] [Google Scholar]
  31. Sunderman F. W., Jr, Hopfer S. M., Knight J. A., McCully K. S., Cecutti A. G., Thornhill P. G., Conway K., Miller C., Patierno S. R., Costa M. Physicochemical characteristics and biological effects of nickel oxides. Carcinogenesis. 1987 Feb;8(2):305–313. doi: 10.1093/carcin/8.2.305. [DOI] [PubMed] [Google Scholar]
  32. Sunderman F. W., Jr, McCully K. S., Rinehimer L. A. Negative test for transplacental carcinogenicity of nickel subsulfide in Fischer rats. Res Commun Chem Pathol Pharmacol. 1981 Mar;31(3):545–554. [PubMed] [Google Scholar]
  33. Sunderman F. W., Jr Mechanisms of nickel carcinogenesis. Scand J Work Environ Health. 1989 Feb;15(1):1–12. doi: 10.5271/sjweh.1888. [DOI] [PubMed] [Google Scholar]
  34. Yu C. P., Hsieh T. H., Oller A. R., Oberdörster G. Evaluation of the human nickel retention model with workplace data. Regul Toxicol Pharmacol. 2001 Apr;33(2):165–172. doi: 10.1006/rtph.2000.1457. [DOI] [PubMed] [Google Scholar]
  35. Zhou D., Salnikow K., Costa M. Cap43, a novel gene specifically induced by Ni2+ compounds. Cancer Res. 1998 May 15;58(10):2182–2189. [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES