Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 2002 Oct;110(Suppl 5):845–850. doi: 10.1289/ehp.02110s5845

Molecular biology of deregulated gene expression in transformed C3H/10T1/2 mouse embryo cell lines induced by specific insoluble carcinogenic nickel compounds.

Joseph R Landolph 1, Anuradha Verma 1, Jamuna Ramnath 1, Farrah Clemens 1
PMCID: PMC1241258  PMID: 12426144

Abstract

In the past, exposure of workers to mixtures of soluble and insoluble nickel compounds by inhalation during nickel refining correlated with increased incidences of lung and nasal cancers. Insoluble nickel subsulfide and nickel oxide (NiO) are carcinogenic in animals by inhalation; soluble nickel sulfate is not. Particles of insoluble nickel compounds were phagocytized by C3H/10T1/2 mouse embryo cells and induced morphological transformation in these cells with the following order of potency: NiO (black) > NiO (green) > nickel subsulfide. Foci induced by black/green NiO and nickel monosulfide developed into anchorage-independent transformed cell lines. Random arbitrarily primed-polymerase chain reaction mRNA differential display showed that nine c-DNA fragments are differentially expressed between nontransformed and nickel compound-transformed 10T1/2 cell lines in 6% of total mRNA; 130 genes would be differentially expressed in 100% of the mRNA. Fragment R3-2 was a sequence in the mouse calnexin gene, fragment R3-1 a portion of the Wdr1 gene, and fragment R2-4 a portion of the ect-2 protooncogene. These three genes were overexpressed in transformed cell lines. Fragment R1-2 was 90% homologous to a fragment of the DRIP/TRAP-80 (vitamin D receptor interacting protein/thyroid hormone receptor-activating protein 80) genes and was expressed in nontransformed but not in nickel-transformed cell lines. Specific insoluble carcinogenic nickel compounds are phagocytized into 10T1/2 cells and likely generate oxygen radicals, which would cause mutations in protooncogenes, and chromosome breakage, and mutations in tumor suppressor genes, inactivating them. These compounds also induce methylation of promoters of tumor suppressor genes, inactivating them. This could lead to permanent overexpresssion of the ect-2, calnexin, and Wdr1 genes and suppression of expression of the DRIP/TRAP-80 gene that we observed, which likely contribute to induction and maintenance of transformed phenotypes.

Full Text

The Full Text of this article is available as a PDF (185.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adler H. J., Winnicki R. S., Gong T. W., Lomax M. I. A gene upregulated in the acoustically damaged chick basilar papilla encodes a novel WD40 repeat protein. Genomics. 1999 Feb 15;56(1):59–69. doi: 10.1006/geno.1998.5672. [DOI] [PubMed] [Google Scholar]
  2. Adler H. J., Winnicki R. S., Gong T. W., Lomax M. I. A gene upregulated in the acoustically damaged chick basilar papilla encodes a novel WD40 repeat protein. Genomics. 1999 Feb 15;56(1):59–69. doi: 10.1006/geno.1998.5672. [DOI] [PubMed] [Google Scholar]
  3. Biedermann K. A., Landolph J. R. Induction of anchorage independence in human diploid foreskin fibroblasts by carcinogenic metal salts. Cancer Res. 1987 Jul 15;47(14):3815–3823. [PubMed] [Google Scholar]
  4. Billings P. C., Heidelberger C., Landolph J. R. S-9 metabolic activation enhances aflatoxin-mediated transformation of C3H/10T1/2 cells. Toxicol Appl Pharmacol. 1985 Jan;77(1):58–65. doi: 10.1016/0041-008x(85)90267-4. [DOI] [PubMed] [Google Scholar]
  5. Costa M., Heck J. D., Robison S. H. Selective phagocytosis of crystalline metal sulfide particles and DNA strand breaks as a mechanism for the induction of cellular transformation. Cancer Res. 1982 Jul;42(7):2757–2763. [PubMed] [Google Scholar]
  6. Costa M., Salnikow K., Cosentino S., Klein C. B., Huang X., Zhuang Z. Molecular mechanisms of nickel carcinogenesis. Environ Health Perspect. 1994 Sep;102 (Suppl 3):127–130. doi: 10.1289/ehp.94102s3127. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. DOLL R. Cancer of the lung and nose in nickel workers. Br J Ind Med. 1958 Oct;15(4):217–223. doi: 10.1136/oem.15.4.217. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Doll R. Strategy for detection of cancer hazards to man. Nature. 1977 Feb 17;265(5595):589–596. doi: 10.1038/265589a0. [DOI] [PubMed] [Google Scholar]
  9. Galvin K., Krishna S., Ponchel F., Frohlich M., Cummings D. E., Carlson R., Wands J. R., Isselbacher K. J., Pillai S., Ozturk M. The major histocompatibility complex class I antigen-binding protein p88 is the product of the calnexin gene. Proc Natl Acad Sci U S A. 1992 Sep 15;89(18):8452–8456. doi: 10.1073/pnas.89.18.8452. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Heck J. D., Costa M. Influence of surface charge and dissolution on the selective phagocytosis of potentially carcinogenic particulate metal compounds. Cancer Res. 1983 Dec;43(12 Pt 1):5652–5656. [PubMed] [Google Scholar]
  11. Ishidate M., Jr, Odashima S. Chromosome tests with 134 compounds on Chinese hamster cells in vitro--a screening for chemical carcinogens. Mutat Res. 1977 Jul;48(3-4):337–353. doi: 10.1016/0027-5107(77)90177-4. [DOI] [PubMed] [Google Scholar]
  12. Ito M., Yuan C. X., Malik S., Gu W., Fondell J. D., Yamamura S., Fu Z. Y., Zhang X., Qin J., Roeder R. G. Identity between TRAP and SMCC complexes indicates novel pathways for the function of nuclear receptors and diverse mammalian activators. Mol Cell. 1999 Mar;3(3):361–370. doi: 10.1016/s1097-2765(00)80463-3. [DOI] [PubMed] [Google Scholar]
  13. Kennedy A. R., Fox M., Murphy G., Little J. B. Relationship between x-ray exposure and malignant transformation in C3H 10T1/2 cells. Proc Natl Acad Sci U S A. 1980 Dec;77(12):7262–7266. doi: 10.1073/pnas.77.12.7262. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kimura K., Tsuji T., Takada Y., Miki T., Narumiya S. Accumulation of GTP-bound RhoA during cytokinesis and a critical role of ECT2 in this accumulation. J Biol Chem. 2000 Jun 9;275(23):17233–17236. doi: 10.1074/jbc.C000212200. [DOI] [PubMed] [Google Scholar]
  15. Klein C. B., Conway K., Wang X. W., Bhamra R. K., Lin X. H., Cohen M. D., Annab L., Barrett J. C., Costa M. Senescence of nickel-transformed cells by an X chromosome: possible epigenetic control. Science. 1991 Feb 15;251(4995):796–799. doi: 10.1126/science.1990442. [DOI] [PubMed] [Google Scholar]
  16. Landolph J. R., Bhatt R. S., Telfer N., Heidelberger C. Comparison of adriamycin- and ouabain-induced cytotoxicity and inhibition of 86rubidium transport in wild-type and ouabain-resistant C3H/10T1/2 mouse fibroblasts. Cancer Res. 1980 Dec;40(12):4581–4588. [PubMed] [Google Scholar]
  17. Landolph J. R. Chemical transformation in C3H 10T1/2 Cl 8 mouse embryo fibroblasts: historical background, assessment of the transformation assay, and evolution and optimization of the transformation assay protocol. IARC Sci Publ. 1985;67:185–203. [PubMed] [Google Scholar]
  18. Landolph J. R., Heidelberger C. Chemical carcinogens produce mutations to ouabain resistance in transformable C3H/10T1/2 Cl 8 mouse fibroblasts. Proc Natl Acad Sci U S A. 1979 Feb;76(2):930–934. doi: 10.1073/pnas.76.2.930. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Landolph J. R. Mechanisms of chemically induced multistep neoplastic transformation in C3H 10T 1/2 cells. Carcinog Compr Surv. 1985;10:211–223. [PubMed] [Google Scholar]
  20. Landolph J. R. Molecular mechanisms of transformation of C3H/10T1/2 C1 8 mouse embryo cells and diploid human fibroblasts by carcinogenic metal compounds. Environ Health Perspect. 1994 Sep;102 (Suppl 3):119–125. doi: 10.1289/ehp.94102s3119. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Landolph J. R. Role of free radicals in metal-induced carcinogenesis. Met Ions Biol Syst. 1999;36:445–483. [PubMed] [Google Scholar]
  22. Miki T., Smith C. L., Long J. E., Eva A., Fleming T. P. Oncogene ect2 is related to regulators of small GTP-binding proteins. Nature. 1993 Apr 1;362(6419):462–465. doi: 10.1038/362462a0. [DOI] [PubMed] [Google Scholar]
  23. Miura T., Patierno S. R., Sakuramoto T., Landolph J. R. Morphological and neoplastic transformation of C3H/10T1/2 Cl 8 mouse embryo cells by insoluble carcinogenic nickel compounds. Environ Mol Mutagen. 1989;14(2):65–78. doi: 10.1002/em.2850140202. [DOI] [PubMed] [Google Scholar]
  24. Oller A. R., Costa M., Oberdörster G. Carcinogenicity assessment of selected nickel compounds. Toxicol Appl Pharmacol. 1997 Mar;143(1):152–166. doi: 10.1006/taap.1996.8075. [DOI] [PubMed] [Google Scholar]
  25. Patierno S. R., Banh D., Landolph J. R. Transformation of C3H/10T1/2 mouse embryo cells to focus formation and anchorage independence by insoluble lead chromate but not soluble calcium chromate: relationship to mutagenesis and internalization of lead chromate particles. Cancer Res. 1988 Sep 15;48(18):5280–5288. [PubMed] [Google Scholar]
  26. Pedersen E., Hogetveit A. C., Andersen A. Cancer of respiratory organs among workers at a nickel refinery in Norway. Int J Cancer. 1973 Jul 15;12(1):32–41. doi: 10.1002/ijc.2910120104. [DOI] [PubMed] [Google Scholar]
  27. Pott F., Ziem U., Reiffer F. J., Huth F., Ernst H., Mohr U. Carcinogenicity studies on fibres, metal compounds, and some other dusts in rats. Exp Pathol. 1987;32(3):129–152. doi: 10.1016/s0232-1513(87)80044-0. [DOI] [PubMed] [Google Scholar]
  28. Rachez C., Lemon B. D., Suldan Z., Bromleigh V., Gamble M., När A. M., Erdjument-Bromage H., Tempst P., Freedman L. P. Ligand-dependent transcription activation by nuclear receptors requires the DRIP complex. Nature. 1999 Apr 29;398(6730):824–828. doi: 10.1038/19783. [DOI] [PubMed] [Google Scholar]
  29. Rachez C., Suldan Z., Ward J., Chang C. P., Burakov D., Erdjument-Bromage H., Tempst P., Freedman L. P. A novel protein complex that interacts with the vitamin D3 receptor in a ligand-dependent manner and enhances VDR transactivation in a cell-free system. Genes Dev. 1998 Jun 15;12(12):1787–1800. doi: 10.1101/gad.12.12.1787. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Reznikoff C. A., Bertram J. S., Brankow D. W., Heidelberger C. Quantitative and qualitative studies of chemical transformation of cloned C3H mouse embryo cells sensitive to postconfluence inhibition of cell division. Cancer Res. 1973 Dec;33(12):3239–3249. [PubMed] [Google Scholar]
  31. Reznikoff C. A., Brankow D. W., Heidelberger C. Establishment and characterization of a cloned line of C3H mouse embryo cells sensitive to postconfluence inhibition of division. Cancer Res. 1973 Dec;33(12):3231–3238. [PubMed] [Google Scholar]
  32. Shuin T., Billings P. C., Lillehaug J. R., Patierno S. R., Roy-Burman P., Landolph J. R. Enhanced expression of c-myc and decreased expression of c-fos protooncogenes in chemically and radiation-transformed C3H/10T1/2 Cl 8 mouse embryo cell lines. Cancer Res. 1986 Oct;46(10):5302–5311. [PubMed] [Google Scholar]
  33. Takai S., Long J. E., Yamada K., Miki T. Chromosomal localization of the human ECT2 proto-oncogene to 3q26.1-->q26.2 by somatic cell analysis and fluorescence in situ hybridization. Genomics. 1995 May 1;27(1):220–222. doi: 10.1006/geno.1995.1033. [DOI] [PubMed] [Google Scholar]
  34. Takai S., Lorenzi M. V., Long J. E., Yamada K., Miki T. Assignment of the ect2 protooncogene to mouse chromosome band 3B by in situ hybridization. Cytogenet Cell Genet. 1998;81(1):83–84. doi: 10.1159/000014994. [DOI] [PubMed] [Google Scholar]
  35. Tatsumoto T., Xie X., Blumenthal R., Okamoto I., Miki T. Human ECT2 is an exchange factor for Rho GTPases, phosphorylated in G2/M phases, and involved in cytokinesis. J Cell Biol. 1999 Nov 29;147(5):921–928. doi: 10.1083/jcb.147.5.921. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Tjoelker L. W., Seyfried C. E., Eddy R. L., Jr, Byers M. G., Shows T. B., Calderon J., Schreiber R. B., Gray P. W. Human, mouse, and rat calnexin cDNA cloning: identification of potential calcium binding motifs and gene localization to human chromosome 5. Biochemistry. 1994 Mar 22;33(11):3229–3236. doi: 10.1021/bi00177a013. [DOI] [PubMed] [Google Scholar]
  37. Welsh J., Chada K., Dalal S. S., Cheng R., Ralph D., McClelland M. Arbitrarily primed PCR fingerprinting of RNA. Nucleic Acids Res. 1992 Oct 11;20(19):4965–4970. doi: 10.1093/nar/20.19.4965. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES