Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 2002 Oct;110(Suppl 5):859–864. doi: 10.1289/ehp.02110s5859

Investigations of methylmercury-induced alterations in neurogenesis.

Elaine M Faustman 1, Rafael A Ponce 1, Ying C Ou 1, Ma Aileen C Mendoza 1, Thomas Lewandowski 1, Terrance Kavanagh 1
PMCID: PMC1241261  PMID: 12426147

Abstract

Methylmercury (MeHg) has been an environmental concern to public health and regulatory agencies for over 50 years because of its toxicity to the human nervous system. Its association with nervous system toxicity in adults and infants near Minamata Bay, Japan, in the 1950s initiated environmental health research inquiries that continue to this day. Observations of greater neurotoxicity with gestational compared with adult exposure suggest a unique susceptibility of the developing nervous system to MeHg. Despite extensive research conducted over the last half century, determination of definitive molecular mechanisms underlying the observed neurotoxic effects of MeHg have not been identified. This paper summarizes results of a series of experiments conducted to examine the effects of MeHg on neuroepithelial cell proliferation, a hypothesized mode of action for its selective effects on neurogenesis. Observed effects of MeHg on cell cycle entry and progression were associated with alterations in a variety of cell cycle regulatory molecules, including p21 signaling pathways. We place these studies in the context of other cellular responses involved in signal transduction, including oxidative stress, altered protein phosphorylation, and altered intracellular calcium homeostasis. Although existing information suggests that no single mechanism underlies the diverse array of effects associated with MeHg-induced developmental neurotoxicity, we demonstrate characteristic effects of MeHg on cell signaling that contribute to observed effects on cell proliferation. Experimentally derived cell cycle kinetic and cytotoxicity data allowed development of a biologically based dose-response model of MeHg-induced alterations in neurodevelopment, which can form the basis for information synthesis and hypothesis testing and for use in assessing risks from environmental exposures.

Full Text

The Full Text of this article is available as a PDF (166.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams J., Palombella V. J., Sausville E. A., Johnson J., Destree A., Lazarus D. D., Maas J., Pien C. S., Prakash S., Elliott P. J. Proteasome inhibitors: a novel class of potent and effective antitumor agents. Cancer Res. 1999 Jun 1;59(11):2615–2622. [PubMed] [Google Scholar]
  2. Atchison W. D., Hare M. F. Mechanisms of methylmercury-induced neurotoxicity. FASEB J. 1994 Jun;8(9):622–629. doi: 10.1096/fasebj.8.9.7516300. [DOI] [PubMed] [Google Scholar]
  3. Barone M. V., Crozat A., Tabaee A., Philipson L., Ron D. CHOP (GADD153) and its oncogenic variant, TLS-CHOP, have opposing effects on the induction of G1/S arrest. Genes Dev. 1994 Feb 15;8(4):453–464. doi: 10.1101/gad.8.4.453. [DOI] [PubMed] [Google Scholar]
  4. Bayer S. A. Cellular aspects of brain development. Neurotoxicology. 1989 Fall;10(3):307–320. [PubMed] [Google Scholar]
  5. Berleth E. S., Pickart C. M. Mechanism of ubiquitin conjugating enzyme E2-230K: catalysis involving a thiol relay? Biochemistry. 1996 Feb 6;35(5):1664–1671. doi: 10.1021/bi952105y. [DOI] [PubMed] [Google Scholar]
  6. Berridge M. J. Calcium signalling and cell proliferation. Bioessays. 1995 Jun;17(6):491–500. doi: 10.1002/bies.950170605. [DOI] [PubMed] [Google Scholar]
  7. Brugarolas J., Chandrasekaran C., Gordon J. I., Beach D., Jacks T., Hannon G. J. Radiation-induced cell cycle arrest compromised by p21 deficiency. Nature. 1995 Oct 12;377(6549):552–557. doi: 10.1038/377552a0. [DOI] [PubMed] [Google Scholar]
  8. Burbacher T. M., Rodier P. M., Weiss B. Methylmercury developmental neurotoxicity: a comparison of effects in humans and animals. Neurotoxicol Teratol. 1990 May-Jun;12(3):191–202. doi: 10.1016/0892-0362(90)90091-p. [DOI] [PubMed] [Google Scholar]
  9. Caelles C., Helmberg A., Karin M. p53-dependent apoptosis in the absence of transcriptional activation of p53-target genes. Nature. 1994 Jul 21;370(6486):220–223. doi: 10.1038/370220a0. [DOI] [PubMed] [Google Scholar]
  10. Chen Q., Yu K., Holbrook N. J., Stevens J. L. Activation of the growth arrest and DNA damage-inducible gene gadd 153 by nephrotoxic cysteine conjugates and dithiothreitol. J Biol Chem. 1992 Apr 25;267(12):8207–8212. [PubMed] [Google Scholar]
  11. Choi B. H., Lapham L. W., Amin-Zaki L., Saleem T. Abnormal neuronal migration, deranged cerebral cortical organization, and diffuse white matter astrocytosis of human fetal brain: a major effect of methylmercury poisoning in utero. J Neuropathol Exp Neurol. 1978 Nov-Dec;37(6):719–733. doi: 10.1097/00005072-197811000-00001. [DOI] [PubMed] [Google Scholar]
  12. Choi B. H. Methylmercury poisoning of the developing nervous system: I. Pattern of neuronal migration in the cerebral cortex. Neurotoxicology. 1986 Summer;7(2):591–600. [PubMed] [Google Scholar]
  13. Clarkson T. W. Metal toxicity in the central nervous system. Environ Health Perspect. 1987 Nov;75:59–64. doi: 10.1289/ehp.877559. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Clarkson T. W., Nordberg G. F., Sager P. R. Reproductive and developmental toxicity of metals. Scand J Work Environ Health. 1985 Jun;11(3 Spec No):145–154. doi: 10.5271/sjweh.2239. [DOI] [PubMed] [Google Scholar]
  15. Denny M. F., Hare M. F., Atchison W. D. Methylmercury alters intrasynaptosomal concentrations of endogenous polyvalent cations. Toxicol Appl Pharmacol. 1993 Oct;122(2):222–232. doi: 10.1006/taap.1993.1191. [DOI] [PubMed] [Google Scholar]
  16. Eto K., Oyanagi S., Itai Y., Tokunaga H., Takizawa Y., Suda I. A fetal type of Minamata disease. An autopsy case report with special reference to the nervous system. Mol Chem Neuropathol. 1992 Feb-Apr;16(1-2):171–186. doi: 10.1007/BF03159968. [DOI] [PubMed] [Google Scholar]
  17. Faustman E. M., Lewandowski T. A., Ponce R. A., Bartell S. M. Biologically based dose-response models for developmental toxicants: lessons from methylmercury. Inhal Toxicol. 1999 Jun-Jul;11(6-7):559–572. doi: 10.1080/089583799196961. [DOI] [PubMed] [Google Scholar]
  18. Fornace A. J., Jr, Alamo I., Jr, Hollander M. C. DNA damage-inducible transcripts in mammalian cells. Proc Natl Acad Sci U S A. 1988 Dec;85(23):8800–8804. doi: 10.1073/pnas.85.23.8800. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Fornace A. J., Jr, Nebert D. W., Hollander M. C., Luethy J. D., Papathanasiou M., Fargnoli J., Holbrook N. J. Mammalian genes coordinately regulated by growth arrest signals and DNA-damaging agents. Mol Cell Biol. 1989 Oct;9(10):4196–4203. doi: 10.1128/mcb.9.10.4196. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Geelen J. A., Dormans J. A., Verhoef A. The early effects of methylmercury on the developing rat brain. Acta Neuropathol. 1990;80(4):432–438. doi: 10.1007/BF00307699. [DOI] [PubMed] [Google Scholar]
  21. Grynkiewicz G., Poenie M., Tsien R. Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem. 1985 Mar 25;260(6):3440–3450. [PubMed] [Google Scholar]
  22. Guillouf C., Rosselli F., Krishnaraju K., Moustacchi E., Hoffman B., Liebermann D. A. p53 involvement in control of G2 exit of the cell cycle: role in DNA damage-induced apoptosis. Oncogene. 1995 Jun 1;10(11):2263–2270. [PubMed] [Google Scholar]
  23. HUGHES W. L. A physicochemical rationale for the biological activity of mercury and its compounds. Ann N Y Acad Sci. 1957 Apr 11;65(5):454–460. doi: 10.1111/j.1749-6632.1956.tb36650.x. [DOI] [PubMed] [Google Scholar]
  24. Hamada R., Yoshida Y., Nomoto M., Osame M., Igata A., Mishima I., Kuwano A. Computed tomography in fetal methylmercury poisoning. J Toxicol Clin Toxicol. 1993;31(1):101–106. doi: 10.3109/15563659309000377. [DOI] [PubMed] [Google Scholar]
  25. Harada M. Congenital Minamata disease: intrauterine methylmercury poisoning. Teratology. 1978 Oct;18(2):285–288. doi: 10.1002/tera.1420180216. [DOI] [PubMed] [Google Scholar]
  26. Hare M. F., McGinnis K. M., Atchison W. D. Methylmercury increases intracellular concentrations of Ca++ and heavy metals in NG108-15 cells. J Pharmacol Exp Ther. 1993 Sep;266(3):1626–1635. [PubMed] [Google Scholar]
  27. Harper J. W., Adami G. R., Wei N., Keyomarsi K., Elledge S. J. The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases. Cell. 1993 Nov 19;75(4):805–816. doi: 10.1016/0092-8674(93)90499-g. [DOI] [PubMed] [Google Scholar]
  28. Herschkowitz N. Brain development in the fetus, neonate and infant. Biol Neonate. 1988;54(1):1–19. doi: 10.1159/000242818. [DOI] [PubMed] [Google Scholar]
  29. Hochstrasser M. Ubiquitin-dependent protein degradation. Annu Rev Genet. 1996;30:405–439. doi: 10.1146/annurev.genet.30.1.405. [DOI] [PubMed] [Google Scholar]
  30. Howard J. D., Mottet N. K. Effects of methylmercury on the morphogenesis of the rat cerebellum. Teratology. 1986 Aug;34(1):89–95. doi: 10.1002/tera.1420340112. [DOI] [PubMed] [Google Scholar]
  31. Laroia G., Cuesta R., Brewer G., Schneider R. J. Control of mRNA decay by heat shock-ubiquitin-proteasome pathway. Science. 1999 Apr 16;284(5413):499–502. doi: 10.1126/science.284.5413.499. [DOI] [PubMed] [Google Scholar]
  32. Leroux B. G., Leisenring W. M., Moolgavkar S. H., Faustman E. M. A biologically-based dose-response model for developmental toxicology. Risk Anal. 1996 Aug;16(4):449–458. doi: 10.1111/j.1539-6924.1996.tb01092.x. [DOI] [PubMed] [Google Scholar]
  33. Maki C. G., Howley P. M. Ubiquitination of p53 and p21 is differentially affected by ionizing and UV radiation. Mol Cell Biol. 1997 Jan;17(1):355–363. doi: 10.1128/mcb.17.1.355. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Marsh D. O., Clarkson T. W., Cox C., Myers G. J., Amin-Zaki L., Al-Tikriti S. Fetal methylmercury poisoning. Relationship between concentration in single strands of maternal hair and child effects. Arch Neurol. 1987 Oct;44(10):1017–1022. doi: 10.1001/archneur.1987.00520220023010. [DOI] [PubMed] [Google Scholar]
  35. Matsumoto H., Koya G., Takeuchi T. Fetal Minamata disease. A neuropathological study of two cases of intrauterine intoxication by a methyl mercury compound. J Neuropathol Exp Neurol. 1965 Oct;24(4):563–574. [PubMed] [Google Scholar]
  36. Mendoza Ma Aileen C., Ponce Rafael A., Ou Ying C., Faustman Elaine M. p21(WAF1/CIP1) inhibits cell cycle progression but not G2/M-phase transition following methylmercury exposure. Toxicol Appl Pharmacol. 2002 Jan 15;178(2):117–125. doi: 10.1006/taap.2001.9267. [DOI] [PubMed] [Google Scholar]
  37. Miura K., Suzuki K., Imura N. Effects of methylmercury on mitotic mouse glioma cells. Environ Res. 1978 Dec;17(3):453–471. doi: 10.1016/0013-9351(78)90048-8. [DOI] [PubMed] [Google Scholar]
  38. Mottet N. K. Effects of chronic low-dose exposure of rat fetuses to methylmercury hydroxide. Teratology. 1974 Oct;10(2):173–189. doi: 10.1002/tera.1420100214. [DOI] [PubMed] [Google Scholar]
  39. Mundy W. R., Freudenrich T. M. Sensitivity of immature neurons in culture to metal-induced changes in reactive oxygen species and intracellular free calcium. Neurotoxicology. 2000 Dec;21(6):1135–1144. [PubMed] [Google Scholar]
  40. Nicotera P., Dypbukt J. M., Rossi A. D., Manzo L., Orrenius S. Thiol modification and cell signalling in chemical toxicity. Toxicol Lett. 1992 Dec;64-65 Spec No:563–567. doi: 10.1016/0378-4274(92)90232-9. [DOI] [PubMed] [Google Scholar]
  41. Onfelt A. Mechanistic aspects on chemical induction of spindle disturbances and abnormal chromosome numbers. Mutat Res. 1986 Nov;168(3):249–300. doi: 10.1016/0165-1110(86)90023-0. [DOI] [PubMed] [Google Scholar]
  42. Ou Y. C., Thompson S. A., Kirchner S. C., Kavanagh T. J., Faustman E. M. Induction of growth arrest and DNA damage-inducible genes Gadd45 and Gadd153 in primary rodent embryonic cells following exposure to methylmercury. Toxicol Appl Pharmacol. 1997 Nov;147(1):31–38. doi: 10.1006/taap.1997.8235. [DOI] [PubMed] [Google Scholar]
  43. Ou Y. C., Thompson S. A., Ponce R. A., Schroeder J., Kavanagh T. J., Faustman E. M. Induction of the cell cycle regulatory gene p21 (Waf1, Cip1) following methylmercury exposure in vitro and in vivo. Toxicol Appl Pharmacol. 1999 Jun 15;157(3):203–212. doi: 10.1006/taap.1999.8685. [DOI] [PubMed] [Google Scholar]
  44. Ou Y. C., White C. C., Krejsa C. M., Ponce R. A., Kavanagh T. J., Faustman E. M. The role of intracellular glutathione in methylmercury-induced toxicity in embryonic neuronal cells. Neurotoxicology. 1999 Oct;20(5):793–804. [PubMed] [Google Scholar]
  45. Parker S. B., Eichele G., Zhang P., Rawls A., Sands A. T., Bradley A., Olson E. N., Harper J. W., Elledge S. J. p53-independent expression of p21Cip1 in muscle and other terminally differentiating cells. Science. 1995 Feb 17;267(5200):1024–1027. doi: 10.1126/science.7863329. [DOI] [PubMed] [Google Scholar]
  46. Ponce R. A., Kavanagh T. J., Mottet N. K., Whittaker S. G., Faustman E. M. Effects of methyl mercury on the cell cycle of primary rat CNS cells in vitro. Toxicol Appl Pharmacol. 1994 Jul;127(1):83–90. doi: 10.1006/taap.1994.1142. [DOI] [PubMed] [Google Scholar]
  47. Rabinovitch P. S., Kubbies M., Chen Y. C., Schindler D., Hoehn H. BrdU-Hoechst flow cytometry: a unique tool for quantitative cell cycle analysis. Exp Cell Res. 1988 Feb;174(2):309–318. doi: 10.1016/0014-4827(88)90302-3. [DOI] [PubMed] [Google Scholar]
  48. Ramanujam M., Prasad K. N. Alterations in gene expression after chronic treatment of glioma cells in culture with methylmercuric chloride. Biochem Pharmacol. 1979 Oct 1;28(19):2979–2984. doi: 10.1016/0006-2952(79)90597-5. [DOI] [PubMed] [Google Scholar]
  49. Rice D., Barone S., Jr Critical periods of vulnerability for the developing nervous system: evidence from humans and animal models. Environ Health Perspect. 2000 Jun;108 (Suppl 3):511–533. doi: 10.1289/ehp.00108s3511. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Rodier P. M., Aschner M., Sager P. R. Mitotic arrest in the developing CNS after prenatal exposure to methylmercury. Neurobehav Toxicol Teratol. 1984 Sep-Oct;6(5):379–385. [PubMed] [Google Scholar]
  51. Ron D., Habener J. F. CHOP, a novel developmentally regulated nuclear protein that dimerizes with transcription factors C/EBP and LAP and functions as a dominant-negative inhibitor of gene transcription. Genes Dev. 1992 Mar;6(3):439–453. doi: 10.1101/gad.6.3.439. [DOI] [PubMed] [Google Scholar]
  52. Russo T., Zambrano N., Esposito F., Ammendola R., Cimino F., Fiscella M., Jackman J., O'Connor P. M., Anderson C. W., Appella E. A p53-independent pathway for activation of WAF1/CIP1 expression following oxidative stress. J Biol Chem. 1995 Dec 8;270(49):29386–29391. doi: 10.1074/jbc.270.49.29386. [DOI] [PubMed] [Google Scholar]
  53. Sager P. R., Aschner M., Rodier P. M. Persistent, differential alterations in developing cerebellar cortex of male and female mice after methylmercury exposure. Brain Res. 1984 Jan;314(1):1–11. doi: 10.1016/0165-3806(84)90170-6. [DOI] [PubMed] [Google Scholar]
  54. Sager P. R. Selectivity of methyl mercury effects on cytoskeleton and mitotic progression in cultured cells. Toxicol Appl Pharmacol. 1988 Jul;94(3):473–486. doi: 10.1016/0041-008x(88)90288-8. [DOI] [PubMed] [Google Scholar]
  55. Sarafian T., Verity M. A. Oxidative mechanisms underlying methyl mercury neurotoxicity. Int J Dev Neurosci. 1991;9(2):147–153. doi: 10.1016/0736-5748(91)90005-7. [DOI] [PubMed] [Google Scholar]
  56. Schreiber M., Kolbus A., Piu F., Szabowski A., Möhle-Steinlein U., Tian J., Karin M., Angel P., Wagner E. F. Control of cell cycle progression by c-Jun is p53 dependent. Genes Dev. 1999 Mar 1;13(5):607–619. doi: 10.1101/gad.13.5.607. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Shackelford R. E., Kaufmann W. K., Paules R. S. Cell cycle control, checkpoint mechanisms, and genotoxic stress. Environ Health Perspect. 1999 Feb;107 (Suppl 1):5–24. doi: 10.1289/ehp.99107s15. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Shaulian E., Karin M. AP-1 in cell proliferation and survival. Oncogene. 2001 Apr 30;20(19):2390–2400. doi: 10.1038/sj.onc.1204383. [DOI] [PubMed] [Google Scholar]
  59. Smith M. L., Chen I. T., Zhan Q., Bae I., Chen C. Y., Gilmer T. M., Kastan M. B., O'Connor P. M., Fornace A. J., Jr Interaction of the p53-regulated protein Gadd45 with proliferating cell nuclear antigen. Science. 1994 Nov 25;266(5189):1376–1380. doi: 10.1126/science.7973727. [DOI] [PubMed] [Google Scholar]
  60. Waga S., Hannon G. J., Beach D., Stillman B. The p21 inhibitor of cyclin-dependent kinases controls DNA replication by interaction with PCNA. Nature. 1994 Jun 16;369(6481):574–578. doi: 10.1038/369574a0. [DOI] [PubMed] [Google Scholar]
  61. Waldman T., Lengauer C., Kinzler K. W., Vogelstein B. Uncoupling of S phase and mitosis induced by anticancer agents in cells lacking p21. Nature. 1996 Jun 20;381(6584):713–716. doi: 10.1038/381713a0. [DOI] [PubMed] [Google Scholar]
  62. Whittaker S. G., Wroble J. T., Silbernagel S. M., Faustman E. M. Characterization of cytoskeletal and neuronal markers in micromass cultures of rat embryonic midbrain cells. Cell Biol Toxicol. 1993 Oct-Dec;9(4):359–375. doi: 10.1007/BF00754465. [DOI] [PubMed] [Google Scholar]
  63. Zhan Q., Bae I., Kastan M. B., Fornace A. J., Jr The p53-dependent gamma-ray response of GADD45. Cancer Res. 1994 May 15;54(10):2755–2760. [PubMed] [Google Scholar]
  64. el-Deiry W. S., Tokino T., Velculescu V. E., Levy D. B., Parsons R., Trent J. M., Lin D., Mercer W. E., Kinzler K. W., Vogelstein B. WAF1, a potential mediator of p53 tumor suppression. Cell. 1993 Nov 19;75(4):817–825. doi: 10.1016/0092-8674(93)90500-p. [DOI] [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES