Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 2002 Oct;110(Suppl 5):865–867. doi: 10.1289/ehp.110-1241262

Induction of apoptosis in mammalian cells by cadmium and zinc.

Wim Wätjen 1, Hajo Haase 1, Marta Biagioli 1, Detmar Beyersmann 1
PMCID: PMC1241262  PMID: 12426148

Abstract

In various mammalian cells, two group IIb metals, cadmium and zinc, induce several morphological and biochemical effects that are salient features of programmed cell death. In C6 rat glioma cells, cadmium caused externalization of phosphatidylserine, breakdown of the mitochondrial membrane potential, activation of caspase-9, internucleosomal DNA fragmentation, chromatin condensation, and nuclear fragmentation. In NIH3T3 murine fibroblasts, cadmium-induced apoptosis was inhibited by overexpression of the antiapoptotic protein Bcl-2. Cadmium-induced DNA fragmentation in C6 cells was independent of inhibition of protein kinase A (PKA), protein kinase C (PKC), mitogen-activated protein kinase (MAPK), phosphatidylinositol-3-kinase, Ca-calmodulin-dependent protein kinase, and protein kinase G. Zinc at moderate concentrations (10-50 microM) protected against programmed cell death induced by cadmium, whereas deprivation of zinc by the membrane-permeable chelator N,N,N',N-terakis-(2-pyridylmethyl)ethylenediamine (TPEN) caused cell death with features characteristic of apoptosis. On the other hand, at elevated extracellular levels (150-200 microM), zinc alone caused programmed cell death in C6 cells. Zinc-induced apoptosis was independent of inhibition of PKA, PKC, guanylate cyclase and MAPK, but it was suppressed in the presence of 100 microM lanthanum chloride.

Full Text

The Full Text of this article is available as a PDF (149.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ascher P. Zinc, Src and NMDA receptors--a transmembrane connection. Nat Neurosci. 1998 Jul;1(3):173–175. doi: 10.1038/619. [DOI] [PubMed] [Google Scholar]
  2. Beyersmann D., Block C., Malviya A. N. Effects of cadmium on nuclear protein kinase C. Environ Health Perspect. 1994 Sep;102 (Suppl 3):177–180. doi: 10.1289/ehp.94102s3177. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Beyersmann D., Haase H. Functions of zinc in signaling, proliferation and differentiation of mammalian cells. Biometals. 2001 Sep-Dec;14(3-4):331–341. doi: 10.1023/a:1012905406548. [DOI] [PubMed] [Google Scholar]
  4. Beyersmann D., Hechtenberg S. Cadmium, gene regulation, and cellular signalling in mammalian cells. Toxicol Appl Pharmacol. 1997 Jun;144(2):247–261. doi: 10.1006/taap.1997.8125. [DOI] [PubMed] [Google Scholar]
  5. Biagioli M., Wätjen W., Beyersmann D., Zoncu R., Cappellini C., Ragghianti M., Cremisi F., Bucci S. Cadmium-induced apoptosis in murine fibroblasts is suppressed by Bcl-2. Arch Toxicol. 2001 Aug;75(6):313–320. doi: 10.1007/s002040100236. [DOI] [PubMed] [Google Scholar]
  6. Colvin R. A. Characterization of a plasma membrane zinc transporter in rat brain. Neurosci Lett. 1998 May 15;247(2-3):147–150. doi: 10.1016/s0304-3940(98)00302-4. [DOI] [PubMed] [Google Scholar]
  7. Cuajungco M. P., Lees G. J. Zinc metabolism in the brain: relevance to human neurodegenerative disorders. Neurobiol Dis. 1997;4(3-4):137–169. doi: 10.1006/nbdi.1997.0163. [DOI] [PubMed] [Google Scholar]
  8. Ding W., Templeton D. M. Activation of parallel mitogen-activated protein kinase cascades and induction of c-fos by cadmium. Toxicol Appl Pharmacol. 2000 Jan 15;162(2):93–99. doi: 10.1006/taap.1999.8829. [DOI] [PubMed] [Google Scholar]
  9. Frederickson C. J., Hernandez M. D., McGinty J. F. Translocation of zinc may contribute to seizure-induced death of neurons. Brain Res. 1989 Feb 20;480(1-2):317–321. doi: 10.1016/0006-8993(89)90199-6. [DOI] [PubMed] [Google Scholar]
  10. Haase H., Beyersmann D. Uptake and intracellular distribution of labile and total Zn(II) in C6 rat glioma cells investigated with fluorescent probes and atomic absorption. Biometals. 1999 Sep;12(3):247–254. doi: 10.1023/a:1009232311677. [DOI] [PubMed] [Google Scholar]
  11. Haase H., Wätjen W., Beyersmann D. Zinc induces apoptosis that can be suppressed by lanthanum in C6 rat glioma cells. Biol Chem. 2001 Aug;382(8):1227–1234. doi: 10.1515/BC.2001.153. [DOI] [PubMed] [Google Scholar]
  12. Hershfinkel M., Moran A., Grossman N., Sekler I. A zinc-sensing receptor triggers the release of intracellular Ca2+ and regulates ion transport. Proc Natl Acad Sci U S A. 2001 Sep 25;98(20):11749–11754. doi: 10.1073/pnas.201193398. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Iryo Y., Matsuoka M., Wispriyono B., Sugiura T., Igisu H. Involvement of the extracellular signal-regulated protein kinase (ERK) pathway in the induction of apoptosis by cadmium chloride in CCRF-CEM cells. Biochem Pharmacol. 2000 Dec 15;60(12):1875–1882. doi: 10.1016/s0006-2952(00)00510-4. [DOI] [PubMed] [Google Scholar]
  14. Maret W., Jacob C., Vallee B. L., Fischer E. H. Inhibitory sites in enzymes: zinc removal and reactivation by thionein. Proc Natl Acad Sci U S A. 1999 Mar 2;96(5):1936–1940. doi: 10.1073/pnas.96.5.1936. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. McCabe M. J., Jr, Jiang S. A., Orrenius S. Chelation of intracellular zinc triggers apoptosis in mature thymocytes. Lab Invest. 1993 Jul;69(1):101–110. [PubMed] [Google Scholar]
  16. McNulty T. J., Taylor C. W. Extracellular heavy-metal ions stimulate Ca2+ mobilization in hepatocytes. Biochem J. 1999 May 1;339(Pt 3):555–561. [PMC free article] [PubMed] [Google Scholar]
  17. Samet J. M., Silbajoris R., Wu W., Graves L. M. Tyrosine phosphatases as targets in metal-induced signaling in human airway epithelial cells. Am J Respir Cell Mol Biol. 1999 Sep;21(3):357–364. doi: 10.1165/ajrcmb.21.3.3656. [DOI] [PubMed] [Google Scholar]
  18. Smith J. B., Dwyer S. D., Smith L. Cadmium evokes inositol polyphosphate formation and calcium mobilization. Evidence for a cell surface receptor that cadmium stimulates and zinc antagonizes. J Biol Chem. 1989 May 5;264(13):7115–7118. [PubMed] [Google Scholar]
  19. Szuster-Ciesielska A., Stachura A., Słotwińska M., Kamińska T., Sniezko R., Paduch R., Abramczyk D., Filar J., Kandefer-Szerszeń M. The inhibitory effect of zinc on cadmium-induced cell apoptosis and reactive oxygen species (ROS) production in cell cultures. Toxicology. 2000 Apr 14;145(2-3):159–171. doi: 10.1016/s0300-483x(00)00144-x. [DOI] [PubMed] [Google Scholar]
  20. Wätjen W., Benters J., Haase H., Schwede F., Jastorff B., Beyersmann D. Zn2+ and Cd2+ increase the cyclic GMP level in PC12 cells by inhibition of the cyclic nucleotide phosphodiesterase. Toxicology. 2001 Jan 26;157(3):167–175. doi: 10.1016/s0300-483x(00)00370-x. [DOI] [PubMed] [Google Scholar]
  21. Wätjen Wim, Cox Monika, Biagioli Marta, Beyersmann Detmar. Cadmium-induced apoptosis in C6 glioma cells: mediation by caspase 9-activation. Biometals. 2002 Mar;15(1):15–25. doi: 10.1023/a:1013141926228. [DOI] [PubMed] [Google Scholar]
  22. Yuan C., Kadiiska M., Achanzar W. E., Mason R. P., Waalkes M. P. Possible role of caspase-3 inhibition in cadmium-induced blockage of apoptosis. Toxicol Appl Pharmacol. 2000 May 1;164(3):321–329. doi: 10.1006/taap.2000.8921. [DOI] [PubMed] [Google Scholar]
  23. el Azzouzi B., Tsangaris G. T., Pellegrini O., Manuel Y., Benveniste J., Thomas Y. Cadmium induces apoptosis in a human T cell line. Toxicology. 1994 Mar 11;88(1-3):127–139. doi: 10.1016/0300-483x(94)90115-5. [DOI] [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES