Abstract
Epidemiologic studies demonstrate that infection, specifically pneumonia, contributes substantially to the increased morbidity and mortality among elderly individuals following exposure to ambient particulate matter (PM). This laboratory has previously demonstrated that a single inhalation exposure of Streptococcus pneumoniae-infected rats to concentrated ambient PM(2.5) (particulate matter with aerodynamic diameter < or =2.5 microm) from New York City (NYC) air exacerbates the infection process and alters pulmonary and systemic immunity. Although these results provide some basis for explaining the epidemiologic findings, the identity of specific PM constituents that might have been responsible for the worsening pneumonia in exposed hosts remains unclear. Thus, studies were performed to correlate the physicochemical attributes of ambient PM(2.5) with its in vivo immunotoxicity to identify and characterize the role of constitutive transition metals in exacerbating an ongoing streptococcal infection. Uninfected or previously infected rats were exposed in the laboratory to soluble divalent Fe, Mn, or Ni chloride salts. After exposure, uninfected rats were sacrificed and their lungs were lavaged. Lungs from infected hosts were used to evaluate changes in bacterial clearance and effects of exposure on the extent/severity of infection. Results demonstrated that inhalation of Fe altered innate and adaptive immunity in uninfected hosts, and both Fe and Ni reduced pulmonary bacterial clearance in previously infected rats. The effects on clearance produced in infected Fe-exposed rats were similar to those seen in infected rats exposed to ambient NYC PM. Taken together, these studies demonstrate that inhaled ambient PM can worsen the outcome of an ongoing pulmonary infection and that associated Fe may play some role in the immunotoxicity.
Full Text
The Full Text of this article is available as a PDF (160.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aranyi C., Graf J. L., O'Shea W. J., Graham J. A., Miller F. J. The effects of intratracheally administered coarse mode particles on respiratory tract infection in mice. Toxicol Lett. 1983 Oct-Nov;19(1-2):63–72. doi: 10.1016/0378-4274(83)90263-1. [DOI] [PubMed] [Google Scholar]
- Ballart I. J., Estevez M. E., Sen L., Diez R. A., Giuntoli J., de Miani S. A., Peñalver J. Progressive dysfunction of monocytes associated with iron overload and age in patients with thalassemia major. Blood. 1986 Jan;67(1):105–109. [PubMed] [Google Scholar]
- Carter J. D., Ghio A. J., Samet J. M., Devlin R. B. Cytokine production by human airway epithelial cells after exposure to an air pollution particle is metal-dependent. Toxicol Appl Pharmacol. 1997 Oct;146(2):180–188. doi: 10.1006/taap.1997.8254. [DOI] [PubMed] [Google Scholar]
- Cohen M. D., McManus T. P., Yang Z., Qu Q., Schlesinger R. B., Zelikoff J. T. Vanadium affects macrophage interferon-gamma-binding and -inducible responses. Toxicol Appl Pharmacol. 1996 May;138(1):110–120. doi: 10.1006/taap.1996.0104. [DOI] [PubMed] [Google Scholar]
- Cohen M. D., Sisco M., Li Y., Zelikoff J. T., Schlesinger R. B. Ozone-induced modulation of cell-mediated immune responses in the lungs. Toxicol Appl Pharmacol. 2001 Mar 1;171(2):71–84. doi: 10.1006/taap.2000.9106. [DOI] [PubMed] [Google Scholar]
- Coonrod J. D., Yoneda K. Comparative role of complement in pneumococcal and staphylococcal pneumonia. Infect Immun. 1982 Sep;37(3):1270–1277. doi: 10.1128/iai.37.3.1270-1277.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Costa D. L., Dreher K. L. Bioavailable transition metals in particulate matter mediate cardiopulmonary injury in healthy and compromised animal models. Environ Health Perspect. 1997 Sep;105 (Suppl 5):1053–1060. doi: 10.1289/ehp.97105s51053. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dockery D. W., Schwartz J., Spengler J. D. Air pollution and daily mortality: associations with particulates and acid aerosols. Environ Res. 1992 Dec;59(2):362–373. doi: 10.1016/s0013-9351(05)80042-8. [DOI] [PubMed] [Google Scholar]
- Dreher K. L., Jaskot R. H., Lehmann J. R., Richards J. H., McGee J. K., Ghio A. J., Costa D. L. Soluble transition metals mediate residual oil fly ash induced acute lung injury. J Toxicol Environ Health. 1997 Feb 21;50(3):285–305. [PubMed] [Google Scholar]
- Gordon T., Gerber H., Fang C. P., Chen L. C. A centrifugal particle concentrator for use in inhalation toxicology. Inhal Toxicol. 1999 Jan;11(1):71–87. doi: 10.1080/089583799197276. [DOI] [PubMed] [Google Scholar]
- Hatch G. E., Slade R., Boykin E., Hu P. C., Miller F. J., Gardner D. E. Correlation of effects of inhaled versus intratracheally injected males on susceptibility to respiratory infection in mice. Am Rev Respir Dis. 1981 Aug;124(2):167–173. doi: 10.1164/arrd.1981.124.2.167. [DOI] [PubMed] [Google Scholar]
- Heumann D., Barras C., Severin A., Glauser M. P., Tomasz A. Gram-positive cell walls stimulate synthesis of tumor necrosis factor alpha and interleukin-6 by human monocytes. Infect Immun. 1994 Jul;62(7):2715–2721. doi: 10.1128/iai.62.7.2715-2721.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Imrich A., Ning Y., Kobzik L. Insoluble components of concentrated air particles mediate alveolar macrophage responses in vitro. Toxicol Appl Pharmacol. 2000 Sep 1;167(2):140–150. doi: 10.1006/taap.2000.9002. [DOI] [PubMed] [Google Scholar]
- Jiang X., Baldwin C. L. Iron augments macrophage-mediated killing of Brucella abortus alone and in conjunction with interferon-gamma. Cell Immunol. 1993 May;148(2):397–407. doi: 10.1006/cimm.1993.1121. [DOI] [PubMed] [Google Scholar]
- Johansson A., Camner P. Effects of nickel dust on rabbit alveolar epithelium. Environ Res. 1980 Aug;22(2):510–516. doi: 10.1016/0013-9351(80)90162-0. [DOI] [PubMed] [Google Scholar]
- Kodavanti U. P., Hauser R., Christiani D. C., Meng Z. H., McGee J., Ledbetter A., Richards J., Costa D. L. Pulmonary responses to oil fly ash particles in the rat differ by virtue of their specific soluble metals. Toxicol Sci. 1998 Jun;43(2):204–212. doi: 10.1006/toxs.1998.2460. [DOI] [PubMed] [Google Scholar]
- LaForce F. M., Boose D. S. Release of lactoferrin by polymorphonuclear leukocytes after aerosol challenge with Escherichia coli. Infect Immun. 1987 Sep;55(9):2293–2295. doi: 10.1128/iai.55.9.2293-2295.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lebowitz M. D. Epidemiological studies of the respiratory effects of air pollution. Eur Respir J. 1996 May;9(5):1029–1054. doi: 10.1183/09031936.96.09051029. [DOI] [PubMed] [Google Scholar]
- Maigetter R. Z., Ehrlich R., Fenters J. D., Gardner D. E. Potentiating effects of manganese dioxide on experimental respiratory infections. Environ Res. 1976 Jun;11(3):386–391. doi: 10.1016/0013-9351(76)90100-6. [DOI] [PubMed] [Google Scholar]
- Murakawa H., Bland C. E., Willis W. T., Dallman P. R. Iron deficiency and neutrophil function: different rates of correction of the depressions in oxidative burst and myeloperoxidase activity after iron treatment. Blood. 1987 May;69(5):1464–1468. [PubMed] [Google Scholar]
- Pope C. A., 3rd Respiratory hospital admissions associated with PM10 pollution in Utah, Salt Lake, and Cache Valleys. Arch Environ Health. 1991 Mar-Apr;46(2):90–97. doi: 10.1080/00039896.1991.9937434. [DOI] [PubMed] [Google Scholar]
- Schlesinger Richard B., Cohen Mitchell D., Gordon Terry, Nadziejko Christine, Zelikoff Judith T., Sisco Maureen, Regal Jean F., Ménache Margaret G. Ozone differentially modulates airway responsiveness in atopic versus nonatopic guinea pigs. Inhal Toxicol. 2002 May;14(5):431–457. doi: 10.1080/089583701753678562. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schwartz J. Air pollution and daily mortality: a review and meta analysis. Environ Res. 1994 Jan;64(1):36–52. doi: 10.1006/enrs.1994.1005. [DOI] [PubMed] [Google Scholar]
- Schwartz J. Total suspended particulate matter and daily mortality in Cincinnati, Ohio. Environ Health Perspect. 1994 Feb;102(2):186–189. doi: 10.1289/ehp.94102186. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schwartz J. What are people dying of on high air pollution days? Environ Res. 1994 Jan;64(1):26–35. doi: 10.1006/enrs.1994.1004. [DOI] [PubMed] [Google Scholar]
- Seaton A., MacNee W., Donaldson K., Godden D. Particulate air pollution and acute health effects. Lancet. 1995 Jan 21;345(8943):176–178. doi: 10.1016/s0140-6736(95)90173-6. [DOI] [PubMed] [Google Scholar]
- Sunderman F. W., Jr, Hopfer S. M., Lin S. M., Plowman M. C., Stojanovic T., Wong S. H., Zaharia O., Ziebka L. Toxicity to alveolar macrophages in rats following parenteral injection of nickel chloride. Toxicol Appl Pharmacol. 1989 Aug;100(1):107–118. doi: 10.1016/0041-008x(89)90095-1. [DOI] [PubMed] [Google Scholar]
- Vial W. C., Toews G. B., Pierce A. K. Early pulmonary granulocyte recruitment in response to Streptococcus pneumoniae. Am Rev Respir Dis. 1984 Jan;129(1):87–91. doi: 10.1164/arrd.1984.129.1.87. [DOI] [PubMed] [Google Scholar]
- Ware J. H., Ferris B. G., Jr, Dockery D. W., Spengler J. D., Stram D. O., Speizer F. E. Effects of ambient sulfur oxides and suspended particles on respiratory health of preadolescent children. Am Rev Respir Dis. 1986 May;133(5):834–842. [PubMed] [Google Scholar]
- Zelikoff J. T., Parsons E., Schlesinger R. B. Inhalation of particulate lead oxide disrupts pulmonary macrophage-mediated functions important for host defense and tumor surveillance in the lung. Environ Res. 1993 Aug;62(2):207–222. doi: 10.1006/enrs.1993.1106. [DOI] [PubMed] [Google Scholar]