Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 2002 Oct;110(Suppl 5):877–881. doi: 10.1289/ehp.02110s5877

Mercury-induced autoimmunity in mice.

Jesper Bo Nielsen 1, Per Hultman 1
PMCID: PMC1241265  PMID: 12426151

Abstract

We have studied the effect of gender, genetics, and toxicokinetics on immune parameters in mercury-induced autoimmunity in mice. Data strongly suggest that the mechanism for mercury-induced autoimmunity involves modification of the autoantigen fibrillarin by mercury followed by a T-cell-dependent immune response driven by the modified fibrillarin. Mice with different H-2 haplotypes were treated with (203)HgCl(2) in a dose of 0.5-16 mg Hg/L drinking water for 10 weeks. Whole-body accumulation and renal accumulation of mercury were assessed. Serum antinuclear antibodies were used to evaluate the autoimmune response, and serum immunoglobulin E (IgE) to study effects on T-helper cells of type 2. Strains with a susceptible H-2 haplotype developed autoantibodies to the nucleolar protein fibrillarin (AFA) in a dose-dependent pattern within 2 weeks. The substantially lower whole-body and organ mercury level needed to induce AFA in the susceptible A.SW strain compared with the H-2 congenic B10.S strain demonstrates that genetic factors outside the H-2 region modify the autoimmune response. Mouse strains without the susceptible haplotype did not develop any autoimmune reaction irrespective of dose and organ deposition of mercury. In susceptible mouse strains, males and females had different thresholds for induction of autoimmune reactions. In susceptible strains, serum IgE increased dose dependently and reached a maximum after 1-2.5 weeks. A susceptible H-2 haplotype is therefore a prerequisite for the autoimmune response. Mercury exposure will modulate the response, qualitatively through the existence of dose-related thresholds for autoimmune response and quantitatively as increasing doses cause increasing autoimmune response. Further, gender and non-H-2 genes modulate both the induction and subsequent development of AFA. Induction of IgE seems not to be mechanistically linked to the AFA response.

Full Text

The Full Text of this article is available as a PDF (151.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bagenstose L. M., Salgame P., Monestier M. IL-12 down-regulates autoantibody production in mercury-induced autoimmunity. J Immunol. 1998 Feb 15;160(4):1612–1617. [PubMed] [Google Scholar]
  2. Bagenstose L. M., Salgame P., Monestier M. Murine mercury-induced autoimmunity: a model of chemically related autoimmunity in humans. Immunol Res. 1999;20(1):67–78. doi: 10.1007/BF02786508. [DOI] [PubMed] [Google Scholar]
  3. Brickman C. M., Shoenfeld Y. The mosaic of autoimmunity. Scand J Clin Lab Invest Suppl. 2001;235:3–15. [PubMed] [Google Scholar]
  4. Cervera R. The epidemiology and significance of autoimmune diseases in health care. Scand J Clin Lab Invest Suppl. 2001;235:27–30. doi: 10.1080/003655101753352013. [DOI] [PubMed] [Google Scholar]
  5. Hultman P., Eneström S., Pollard K. M., Tan E. M. Anti-fibrillarin autoantibodies in mercury-treated mice. Clin Exp Immunol. 1989 Dec;78(3):470–477. [PMC free article] [PubMed] [Google Scholar]
  6. Hultman P., Johansson U., Dagnaes-Hansen F. Murine mercury-induced autoimmunity: the role of T-helper cells. J Autoimmun. 1995 Dec;8(6):809–823. doi: 10.1016/s0896-8411(95)80019-0. [DOI] [PubMed] [Google Scholar]
  7. Hultman P., Nielsen J. B. The effect of dose, gender, and non-H-2 genes in murine mercury-induced autoimmunity. J Autoimmun. 2001 Aug;17(1):27–37. doi: 10.1006/jaut.2001.0521. [DOI] [PubMed] [Google Scholar]
  8. Johansson U., Hansson-Georgiadis H., Hultman P. The genotype determines the B cell response in mercury-treated mice. Int Arch Allergy Immunol. 1998 Aug;116(4):295–305. doi: 10.1159/000023959. [DOI] [PubMed] [Google Scholar]
  9. Johansson U., Sander B., Hultman P. Effects of the murine genotype on T cell activation and cytokine production in murine mercury-induced autoimmunity. J Autoimmun. 1997 Aug;10(4):347–355. doi: 10.1006/jaut.1997.0149. [DOI] [PubMed] [Google Scholar]
  10. KAZANTZIS G., SCHILLER K. F., ASSCHER A. W., DREW R. G. Albuminuria and the nephrotic syndrome following exposure to mercury and its compounds. Q J Med. 1962 Oct;31:403–418. [PubMed] [Google Scholar]
  11. Klein J., Benoist C., David C. S., Demant P., Lindahl K. F., Flaherty L., Flavell R. A., Hämmerling U., Hood L. E., Hunt S. W., 3rd Revised nomenclature of mouse H-2 genes. Immunogenetics. 1990;32(3):147–149. doi: 10.1007/BF02114967. [DOI] [PubMed] [Google Scholar]
  12. Kubicka-Muranyi M., Kremer J., Rottmann N., Lübben B., Albers R., Bloksma N., Lührmann R., Gleichmann E. Murine systemic autoimmune disease induced by mercuric chloride: T helper cells reacting to self proteins. Int Arch Allergy Immunol. 1996 Jan;109(1):11–20. doi: 10.1159/000237226. [DOI] [PubMed] [Google Scholar]
  13. Monestier M., Losman M. J., Novick K. E., Aris J. P. Molecular analysis of mercury-induced antinucleolar antibodies in H-2S mice. J Immunol. 1994 Jan 15;152(2):667–675. [PubMed] [Google Scholar]
  14. Nielsen J. B., Hultman P. Experimental studies on genetically determined susceptibility to mercury-induced autoimmune response. Ren Fail. 1999 May-Jul;21(3-4):343–348. doi: 10.3109/08860229909085097. [DOI] [PubMed] [Google Scholar]
  15. Nielsen J. B., Hultman P. Strain dependence of steady-state retention and elimination of mercury in mice after prolonged exposure to mercury(II) chloride. Analyst. 1998 Jan;123(1):87–90. doi: 10.1039/a705215d. [DOI] [PubMed] [Google Scholar]
  16. Nielsen J. B. Toxicokinetics of mercuric chloride and methylmercuric chloride in mice. J Toxicol Environ Health. 1992 Sep;37(1):85–122. doi: 10.1080/15287399209531659. [DOI] [PubMed] [Google Scholar]
  17. Pietsch P., Vohr H. W., Degitz K., Gleichmann E. Immunological alterations inducible by mercury compounds. II. HgCl2 and gold sodium thiomalate enhance serum IgE and IgG concentrations in susceptible mouse strains. Int Arch Allergy Appl Immunol. 1989;90(1):47–53. [PubMed] [Google Scholar]
  18. Pollard K. M., Lee D. K., Casiano C. A., Bluthner M., Johnston M. M., Tan E. M. The autoimmunity-inducing xenobiotic mercury interacts with the autoantigen fibrillarin and modifies its molecular and antigenic properties. J Immunol. 1997 Apr 1;158(7):3521–3528. [PubMed] [Google Scholar]
  19. Pollard K. M., Pearson D. L., Blüthner M., Tan E. M. Proteolytic cleavage of a self-antigen following xenobiotic-induced cell death produces a fragment with novel immunogenic properties. J Immunol. 2000 Aug 15;165(4):2263–2270. doi: 10.4049/jimmunol.165.4.2263. [DOI] [PubMed] [Google Scholar]
  20. Reimer G., Steen V. D., Penning C. A., Medsger T. A., Jr, Tan E. M. Correlates between autoantibodies to nucleolar antigens and clinical features in patients with systemic sclerosis (scleroderma). Arthritis Rheum. 1988 Apr;31(4):525–532. doi: 10.1002/art.1780310409. [DOI] [PubMed] [Google Scholar]
  21. Sapin C., Hirsch F., Delaporte J. P., Bazin H., Druet P. Polyclonal IgE increase after HgCl2 injections in BN and LEW rats: a genetic analysis. Immunogenetics. 1984;20(3):227–236. doi: 10.1007/BF00364205. [DOI] [PubMed] [Google Scholar]
  22. Warfvinge K., Hansson H., Hultman P. Systemic autoimmunity due to mercury vapor exposure in genetically susceptible mice: dose-response studies. Toxicol Appl Pharmacol. 1995 Jun;132(2):299–309. doi: 10.1006/taap.1995.1111. [DOI] [PubMed] [Google Scholar]
  23. Yang J. M., Baserga S. J., Turley S. J., Pollard K. M. Fibrillarin and other snoRNP proteins are targets of autoantibodies in xenobiotic-induced autoimmunity. Clin Immunol. 2001 Oct;101(1):38–50. doi: 10.1006/clim.2001.5099. [DOI] [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES