Abstract
Successful in vivo chelation treatment of metal intoxication requires that a significant fraction of the administered chelator in fact chelate the toxic metal. This depends on metal, chelator, and organism-related factors (e.g., ionic diameter, ring size and deformability, hardness/softness of electron donors and acceptors, route of administration, bioavailability, metabolism, organ and intra/extracellular compartmentalization, and excretion). In vivo chelation is not necessarily an equilibrium reaction, determined by the standard stability constant, because rate effects and ligand exchange reactions considerably influence complex formation. Hydrophilic chelators most effectively promote renal metal excretion, but they complex intracellular metal deposits inefficiently. Lipophilic chelators can decrease intracellular stores but may redistribute toxic metals to, for example, the brain. In chronic metal-induced disease, where life-long chelation may be necessary, possible toxicity or side effects of the administered chelator may be limiting. The metal selectivity of chelators is important because of the risk of depletion of the patient's stores of essential metals. Dimercaptosuccinic acid and dimercaptopropionic sulfonate have gained more general acceptance among clinicians, undoubtedly improving the management of many human metal intoxications, including lead, arsenic, and mercury compounds. Still, development of new safer chelators suited for long-term oral administration for chelation of metal deposits (mainly iron), is an important research challenge for the future.
Full Text
The Full Text of this article is available as a PDF (136.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aaseth J., Frieheim E. A. Treatment of methyl mercury poisoning in mice with 2,3-dimercaptosuccinic acid and other complexing thiols. Acta Pharmacol Toxicol (Copenh) 1978 Apr;42(4):248–252. doi: 10.1111/j.1600-0773.1978.tb02196.x. [DOI] [PubMed] [Google Scholar]
- Andersen O., Nielsen J. B., Svendsen P. Oral cadmium chloride intoxication in mice: effects of chelation. Toxicology. 1988 Nov 14;52(1-2):65–79. doi: 10.1016/0300-483x(88)90197-7. [DOI] [PubMed] [Google Scholar]
- Andersen O. Oral cadmium exposure in mice: toxicokinetics and efficiency of chelating agents. Crit Rev Toxicol. 1989;20(2):83–112. doi: 10.3109/10408448909017905. [DOI] [PubMed] [Google Scholar]
- Andersen O. Principles and recent developments in chelation treatment of metal intoxication. Chem Rev. 1999 Sep 8;99(9):2683–2710. doi: 10.1021/cr980453a. [DOI] [PubMed] [Google Scholar]
- Aposhian H. V., Carter D. E., Hoover T. D., Hsu C. A., Maiorino R. M., Stine E. DMSA, DMPS, and DMPA--as arsenic antidotes. Fundam Appl Toxicol. 1984 Apr;4(2 Pt 2):S58–S70. doi: 10.1016/0272-0590(84)90138-6. [DOI] [PubMed] [Google Scholar]
- Aposhian H. V., Maiorino R. M., Gonzalez-Ramirez D., Zuniga-Charles M., Xu Z., Hurlbut K. M., Junco-Munoz P., Dart R. C., Aposhian M. M. Mobilization of heavy metals by newer, therapeutically useful chelating agents. Toxicology. 1995 Mar 31;97(1-3):23–38. doi: 10.1016/0300-483x(95)02965-b. [DOI] [PubMed] [Google Scholar]
- Aposhian H. V., Tadlock C. H., Moon T. E. Protection of mice against lethal effects of sodium arsenite--a quantitative comparison of a number of chelating agents. Toxicol Appl Pharmacol. 1981 Dec;61(3):385–392. doi: 10.1016/0041-008x(81)90360-4. [DOI] [PubMed] [Google Scholar]
- Aposhian M. M., Maiorino R. M., Xu Z., Aposhian H. V. Sodium 2,3-dimercapto-1-propanesulfonate (DMPS) treatment does not redistribute lead or mercury to the brain of rat. Toxicology. 1996 May 3;109(1):49–55. doi: 10.1016/0300-483x(96)03308-2. [DOI] [PubMed] [Google Scholar]
- BERLIN M., ULLREBG S. Increased uptake of mercury in mouse brain caused by 2,3-dimercaptopropanol. Nature. 1963 Jan 5;197:84–85. doi: 10.1038/197084a0. [DOI] [PubMed] [Google Scholar]
- Chisolm J. J., Jr BAL, EDTA, DMSA and DMPS in the treatment of lead poisoning in children. J Toxicol Clin Toxicol. 1992;30(4):493–504. doi: 10.3109/15563659209017937. [DOI] [PubMed] [Google Scholar]
- Cory-Slechta D. A. Mobilization of lead over the course of DMSA chelation therapy and long-term efficacy. J Pharmacol Exp Ther. 1988 Jul;246(1):84–91. [PubMed] [Google Scholar]
- DALHAMN T., FRIBERG L. Dimercaprol (2, 3-dimercaptopropanol) in chronic cadmium poisoning. Acta Pharmacol Toxicol (Copenh) 1955;11(1):68–71. doi: 10.1111/j.1600-0773.1955.tb00203.x. [DOI] [PubMed] [Google Scholar]
- Ding G. S., Liang Y. Y. Antidotal effects of dimercaptosuccinic acid. J Appl Toxicol. 1991 Feb;11(1):7–14. doi: 10.1002/jat.2550110103. [DOI] [PubMed] [Google Scholar]
- Gerr F., Frumkin H., Hodgins P. Hemolytic anemia following succimer administration in a glucose-6-phosphate dehydrogenase deficient patient. J Toxicol Clin Toxicol. 1994;32(5):569–575. doi: 10.3109/15563659409011061. [DOI] [PubMed] [Google Scholar]
- Grandjean P., Jacobsen I. A., Jørgensen P. J. Chronic lead poisoning treated with dimercaptosuccinic acid. Pharmacol Toxicol. 1991 Apr;68(4):266–269. doi: 10.1111/j.1600-0773.1991.tb01236.x. [DOI] [PubMed] [Google Scholar]
- Halliwell B. Protection against tissue damage in vivo by desferrioxamine: what is its mechanism of action? Free Radic Biol Med. 1989;7(6):645–651. doi: 10.1016/0891-5849(89)90145-7. [DOI] [PubMed] [Google Scholar]
- Hoover T. D., Aposhian H. V. BAL increases the arsenic-74 content of rabbit brain. Toxicol Appl Pharmacol. 1983 Aug;70(1):160–162. doi: 10.1016/0041-008x(83)90190-4. [DOI] [PubMed] [Google Scholar]
- Nielsen J. B., Andersen O. Effect of four thiol-containing chelators on disposition of orally administered mercuric chloride. Hum Exp Toxicol. 1991 Nov;10(6):423–430. doi: 10.1177/096032719101000610. [DOI] [PubMed] [Google Scholar]
- STOHLER H. R., FREY J. R. CHEMOTHERAPY OF EXPERIMENTAL SCHISTOSOMIASIS MANSONI: INFLUENCE OF DIMERCAPTOSUCCINIC ACID ON THE TOXICITY AND ANTISCHISTOSOMAL ACTIVITY OF SODIUM ANTIMONY DIMERCAPTOSUCCINATE AND OTHER ANTIMONY COMPOUNDS IN MICE. Ann Trop Med Parasitol. 1964 Dec;58:431–438. doi: 10.1080/00034983.1964.11686265. [DOI] [PubMed] [Google Scholar]
- Sigg T., Burda A., Leikin J. B., Gossman W., Umanos J. A report of pediatric SUCCIMER overdose. Vet Hum Toxicol. 1998 Apr;40(2):90–91. [PubMed] [Google Scholar]
- Singh S., Khodr H., Taylor M. I., Hider R. C. Therapeutic iron chelators and their potential side-effects. Biochem Soc Symp. 1995;61:127–137. doi: 10.1042/bss0610127. [DOI] [PubMed] [Google Scholar]
- Stine E. R., Hsu C. A., Hoover T. D., Aposhian H. V., Carter D. E. N-(2,3-dimercaptopropyl)phthalamidic acid: protection, in vivo and in vitro, against arsenic intoxication. Toxicol Appl Pharmacol. 1984 Sep 15;75(2):329–336. doi: 10.1016/0041-008x(84)90215-1. [DOI] [PubMed] [Google Scholar]
- Tilbrook G. S., Hider R. C. Iron chelators for clinical use. Met Ions Biol Syst. 1998;35:691–730. [PubMed] [Google Scholar]
- WALSHE J. M. Penicillamine, a new oral therapy for Wilson's disease. Am J Med. 1956 Oct;21(4):487–495. doi: 10.1016/0002-9343(56)90066-3. [DOI] [PubMed] [Google Scholar]
- Walshe J. M. Copper chelation in patients with Wilson's disease. A comparison of penicillamine and triethylene tetramine dihydrochloride. Q J Med. 1973 Jul;42(167):441–452. [PubMed] [Google Scholar]
- Walshe J. M. Treatment of Wilson's disease with trientine (triethylene tetramine) dihydrochloride. Lancet. 1982 Mar 20;1(8273):643–647. doi: 10.1016/s0140-6736(82)92201-2. [DOI] [PubMed] [Google Scholar]
- Wang S. C., Ting K. S., Wu C. C. Chelating therapy with Na-DMS in occupational lead and mercury intoxications. Chin Med J. 1965 Jul;84(7):437–439. [PubMed] [Google Scholar]
- Zvirblis P., Ellin R. I. Acute systemic toxicity of pure dimercaprol and trimercaptopropane. Toxicol Appl Pharmacol. 1976 May;36(2):297–299. doi: 10.1016/0041-008x(76)90008-9. [DOI] [PubMed] [Google Scholar]