Skip to main content
IUCrData logoLink to IUCrData
. 2025 Aug 15;10(Pt 8):x250676. doi: 10.1107/S2414314625006765

Bis(l-leucinium) hexa­chlorido­stannate(IV) dihydrate

Rochdi Ghallab a,*, Amina Kemmouche b, Mehdi Boutebdja a, Stéphane Golhen c
Editor: W T A Harrisond
PMCID: PMC12412679  PMID: 40917530

The l-leucinium cations in the title compound adopt extended conformations that maximize the separation between the methyl groups [–CH(CH3)2] and the polar NH3+ and COOH groups.

Keywords: crystal structure, X-ray diffraction, l-leucine, hexa­chloro­stannate(IV)

Abstract

The title compound, (C6H14NO2)2[SnCl6]·2H2O, features l-leucinium cations adopting extended conformations, which maximizes the separation between the methyl groups [–CH(CH3)2] and the polar NH3+ and COOH moieties. Additionally, an intra­molecular hydrogen bond between the ammonium (NH3+) group and the carboxyl group induces a slight reduction in the C—C—N bond angles, with an average value of 106.5°, compared to the ideal tetra­hedral angle of 109.5°. The NH3+ group is nearly coplanar with the C—C—C—C carbon chain in both fragments, whereas the carboxyl (COOH) group and the methyl group at the C5 position deviate significantly from this plane. The octa­hedral complex anion is close to regular. In the crystal, an extensive network of hydrogen bonds links the components into a three-dimensional network.graphic file with name x-10-x250676-scheme1-3D1.jpg

Structure description

The title compound, 2(C6H14NO2)+·[SnCl6]2–·2H2O, crystallizes in the monoclinic space group P21. The asymmetric unit consists of two protonated l-leucinium cations, one hexa­chloro­stannate(IV) anion, and two water mol­ecules of crystallization (Fig. 1). Equivalent atoms in the cations are labelled C1A and C1B, etc.

Figure 1.

Figure 1

The mol­ecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level.

During synthesis, the oxidation state of tin atom changed from +II to +IV, resulting in a tin(IV) atom hexa­coordinated by chloride ions and forming a slightly distorted octa­hedral geometry. The Sn—Cl bond lengths range from 2.4045 (11) to 2.4387 (11) Å, while the Cl—Sn—Cl angles deviate by approximately ±1° [88.62 (4)–91.38 (4)°] from the ideal 90° of a regular octa­hedron, indicating only minimal angular distortion. The absence of more significant distortions can likely be attributed to the fact that the hexa­chloro­stannate(IV) anions are discrete; nevertheless, they accept numerous N—H⋯Cl and O—H⋯Cl hydrogen bonds from the organic cations and water mol­ecules, as seen in related structures (Ghallab et al., 2020; Gheribi et al., 2022).

The l-leucinium cations in the title compound adopt extended conformations, maximizing the separation between the methyl groups [–CH(CH3)2] and the polar NH3+ and COOH groups. This arrangement results in C1—C2 bond lengths that are slightly longer than the median value typically observed for a single C—C bond, with measured values of 1.521 (6) and 1.517 (7) Å for the two cations. The C2—C3—C4 angles, at 115.2 (3) and 115.8 (3)°, are larger than the other C—C—C angles in the carbon backbone (mean: 109.5°), a difference attributed to steric hindrance between the methyl groups and the polar functions. Additionally, an intra­molecular hydrogen bond between the NH3+ group and the carboxyl group slightly reduce the C1—C2—N1 angles, which average 106.5°, compared to the theoretical tetra­hedral value of 109.5°.

The N atoms of the NH3+ groups are nearly coplanar with the C2—C3—C4—C6 chains, as indicated by the torsion angles N1—C2—C3—C4 [–68.6 (4) and −62.0 (4)° for the A and B cations, respectively] and C2—C3—C4—C6 [168.7 (3) and 170.9 (4)°]. In contrast, the COOH group and the methyl group at C5 deviate significantly from this plane, with torsion angles of 170.1 (3) and 178.2 (3)° for C1—C2—C3—C4 and −68.7 (4) and −66.6 (4)° for C5—C4—C3—C2. This extended conformation is consistent with that observed for free l-leucine and its salts with inorganic acids (Zeghouan et al., 2012; Fleck et al., 2013; Janczak et al., 2007), with the notable exception of l-leucinium oxalate (Rajagopal et al., 2003) and l-leucinium picrate (Anitha et al., 2005), where the carboxyl group is nearly coplanar with the C2—C3—C4—C6 backbone.

The three-dimensional architecture of the extended structure of the title compound is consolidated by an extensive hydrogen-bonding network (Table 1). A central feature of this network is the Inline graphic(10) graph-set motif formed by the N1B—H1BA⋯O2A and N1A—H1AC⋯O2B hydrogen bonds (Fig. 2). This motif organizes the cations into dimers, which propagate along the crystallographic a-axis to form hydrogen-bonded layers lying parallel to the ac plane.

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1A—H1AA⋯Cl3i 0.91 2.78 3.470 (4) 133
N1A—H1AA⋯Cl5i 0.91 2.58 3.342 (4) 142
N1A—H1AB⋯Cl4ii 0.91 2.77 3.471 (4) 134
N1A—H1AB⋯Cl6ii 0.91 2.65 3.452 (4) 148
N1A—H1AC⋯O2A 0.91 2.17 2.620 (5) 110
N1A—H1AC⋯O2B 0.91 2.26 2.959 (5) 133
N1B—H1BA⋯O2A 0.91 1.99 2.873 (5) 164
N1B—H1BA⋯O2B 0.91 2.27 2.626 (5) 103
N1B—H1BB⋯Cl2 0.91 2.47 3.352 (4) 164
N1B—H1BC⋯Cl1iii 0.91 2.71 3.583 (4) 162
O1A—H1A⋯O1W 0.84 1.79 2.624 (5) 169
O1B—H1B⋯O2W 0.84 1.79 2.627 (6) 173
O1W—H1WA⋯Cl6iii 0.87 2.69 3.440 (3) 145
O1W—H1WB⋯Cl1 0.87 2.44 3.283 (4) 162
O2W—H2WA⋯Cl3ii 0.87 2.48 3.312 (4) 161
O2W—H2WB⋯Cl5i 0.87 2.63 3.393 (3) 147

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Figure 2.

Figure 2

Projection onto the ac plane showing Inline graphic(10) graph-set motifs that organize the mol­ecules into dimers.

The water mol­ecules (O1W, O2W) act as critical structural mediators. Their participation in four key hydrogen bonds, viz., O1W—H1WA⋯Cl6, O1W—H1WB⋯Cl1, O2W—H2WA⋯Cl3 and O2W—H2WB⋯Cl5, anchors the anionic layer. Furthermore, the water mol­ecules bridge the cationic and anionic layers via acceptor–donor inter­actions (O1A—H1A⋯O1W and O1B—H1B⋯O2W), effectively inter­connecting the two substructures (Fig. 3). Additional consolidation arises from N—H⋯Cl hydrogen bonds, which reinforce the cohesion between adjacent layers. These inter­actions, combined with the water-mediated network, create a robust three-dimensional framework.

Figure 3.

Figure 3

Projection onto the bc plane showing the inter­connection of the cationic and anionic sublayers mediated by water mol­ecules.

The synergy between dimer-forming Inline graphic(10) motifs, water-mediated inter­layer connectivity, and N—H⋯Cl inter­actions highlights the hierarchical role of hydrogen bonding in directing the crystal packing. This architecture underscores the importance of solvent mol­ecules in templating anion–cation organization in hybrid inorganic–organic systems.

Synthesis and crystallization

A mixture of l-leucine (0.262 g) and tin(II) chloride dihydrate (SnCl2·2H2O, 0.255 g) was dissolved in 20 ml of distilled water acidified with 3 drops of concentrated hydro­chloric acid (HCl, 37%). The solution was stirred and heated at 60°C for 1 h. It was then left to slowly evaporate at room temperature. After 7 days, colourless single crystals suitable for X-ray diffraction analysis were obtained.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

Table 2. Experimental details.

Crystal data
Chemical formula (C6H14NO2)2[SnCl6]·2H2O
M r 631.78
Crystal system, space group Monoclinic, P21
Temperature (K) 150
a, b, c (Å) 10.9838 (11), 10.7837 (11), 10.8556 (11)
β (°) 102.316 (4)
V3) 1256.2 (2)
Z 2
Radiation type Mo Kα
μ (mm−1) 1.68
Crystal size (mm) 0.17 × 0.13 × 0.11
 
Data collection
Diffractometer D8 VENTURE Bruker AXS
Absorption correction Multi-scan (SADABS; Krause et al., 2015)
Tmin, Tmax 0.769, 0.831
No. of measured, independent and observed [I > 2σ(I)] reflections 13707, 5560, 5406
R int 0.024
(sin θ/λ)max−1) 0.649
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.021, 0.052, 1.08
No. of reflections 5560
No. of parameters 255
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.14, −0.96
Absolute structure Flack x determined using 2423 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013)
Absolute structure parameter −0.004 (10)

Computer programs: APEX2 and SAINT (Bruker, 2014), SHELXT2018/2 (Sheldrick, 2015a), SHELXL2019/3 (Sheldrick, 2015b) and OLEX2 (Dolomanov et al., 2009).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2414314625006765/hb4529sup1.cif

x-10-x250676-sup1.cif (418.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2414314625006765/hb4529Isup2.hkl

x-10-x250676-Isup2.hkl (442.2KB, hkl)

CCDC reference: 2478499

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

Thanks are due to Thierry Roisnel du CDIFX, Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes), 35042 Rennes, France. The authors thank the Cambridge Crystallographic Data Center (CCDC) for access to the Cambridge Structural Database (CSD) through the FAIRE program.

full crystallographic data

Bis(L-leucinium) hexachloridostannate(IV) dihydrate . Crystal data

(C6H14NO2)2[SnCl6]·2H2O F(000) = 636
Mr = 631.78 Dx = 1.670 Mg m3
Monoclinic, P21 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P2yb Cell parameters from 5406 reflections
a = 10.9838 (11) Å θ = 2.4–27.5°
b = 10.7837 (11) Å µ = 1.68 mm1
c = 10.8556 (11) Å T = 150 K
β = 102.316 (4)° Block, white
V = 1256.2 (2) Å3 0.17 × 0.13 × 0.11 mm
Z = 2

Bis(L-leucinium) hexachloridostannate(IV) dihydrate . Data collection

D8 VENTURE Bruker AXS diffractometer 5406 reflections with I > 2σ(I)
Radiation source: Enraf Nonius FR590 Rint = 0.024
CCD rotation images, thick slices scans θmax = 27.5°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Krause et al., 2015) h = −14→14
Tmin = 0.769, Tmax = 0.831 k = −12→13
13707 measured reflections l = −14→14
5560 independent reflections

Bis(L-leucinium) hexachloridostannate(IV) dihydrate . Refinement

Refinement on F2 H-atom parameters constrained
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0152P)2 + 0.9168P] where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.021 (Δ/σ)max = 0.001
wR(F2) = 0.052 Δρmax = 1.14 e Å3
S = 1.08 Δρmin = −0.96 e Å3
5560 reflections Absolute structure: Flack x determined using 2423 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
255 parameters Absolute structure parameter: −0.004 (10)
1 restraint

Bis(L-leucinium) hexachloridostannate(IV) dihydrate . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Hydrogen atom positions were located in the difference Fourier map, then placed in idealized positions and refined using a riding model, with their displacement parameters set relative to those of their parent atoms. Key experimental parameters and refinement details are provided in the accompanying table.

Bis(L-leucinium) hexachloridostannate(IV) dihydrate . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Sn1 0.49452 (2) 0.82589 (8) 0.24933 (3) 0.01803 (6)
Cl5 0.50217 (10) 0.62101 (9) 0.15898 (10) 0.0274 (2)
Cl2 0.58501 (10) 0.74656 (10) 0.45596 (10) 0.0300 (2)
Cl4 0.40557 (10) 0.90459 (10) 0.04246 (10) 0.0279 (2)
Cl1 0.28821 (10) 0.78517 (11) 0.28989 (12) 0.0362 (3)
Cl6 0.48614 (11) 1.03090 (9) 0.33714 (10) 0.0285 (2)
Cl3 0.70110 (9) 0.86564 (11) 0.21024 (11) 0.0332 (3)
O2B 0.6272 (3) 0.2663 (3) 0.2471 (3) 0.0309 (7)
O1B 0.8180 (2) 0.3081 (4) 0.2165 (3) 0.0317 (7)
H1B 0.805837 0.244024 0.171470 0.048*
O2W 0.7671 (3) 0.1178 (4) 0.0630 (3) 0.0370 (8)
H2WA 0.741271 0.045743 0.083037 0.055*
H2WB 0.721040 0.133722 −0.010916 0.055*
O1A 0.1824 (3) 0.3717 (3) 0.2622 (3) 0.0356 (9)
H1A 0.201961 0.416162 0.327006 0.053*
N1B 0.6272 (3) 0.4429 (4) 0.4137 (3) 0.0211 (7)
H1BA 0.558359 0.422507 0.354275 0.025*
H1BB 0.618522 0.521155 0.442085 0.025*
H1BC 0.636197 0.388650 0.479181 0.025*
O1W 0.2364 (3) 0.5357 (4) 0.4443 (3) 0.0368 (8)
H1WA 0.295281 0.499525 0.498906 0.055*
H1WB 0.267860 0.596358 0.408457 0.055*
N1A 0.3796 (3) 0.2222 (4) 0.0820 (3) 0.0245 (8)
H1AA 0.375746 0.212276 −0.001998 0.029*
H1AB 0.399377 0.148537 0.122200 0.029*
H1AC 0.438963 0.279448 0.113534 0.029*
C4A 0.1241 (3) 0.0902 (4) −0.0217 (4) 0.0235 (9)
H4A 0.199029 0.069140 −0.056190 0.028*
O2A 0.3855 (3) 0.3808 (4) 0.2660 (3) 0.0297 (7)
C1B 0.7214 (3) 0.3273 (7) 0.2674 (3) 0.0214 (7)
C5B 0.9132 (4) 0.6561 (5) 0.4828 (5) 0.0380 (11)
H5BA 0.924071 0.725335 0.542663 0.057*
H5BB 0.843498 0.673945 0.412213 0.057*
H5BC 0.989605 0.645129 0.451034 0.057*
C5A 0.0377 (4) 0.1692 (5) −0.1179 (4) 0.0342 (10)
H5AA 0.015946 0.124339 −0.198095 0.051*
H5AB 0.079523 0.247040 −0.130280 0.051*
H5AC −0.038261 0.187265 −0.087508 0.051*
C6B 0.9955 (4) 0.5050 (5) 0.6554 (4) 0.0411 (12)
H6BA 1.068981 0.487570 0.620531 0.062*
H6BB 0.974653 0.431433 0.699814 0.062*
H6BC 1.013350 0.574610 0.714509 0.062*
C6A 0.0592 (4) −0.0310 (4) 0.0008 (5) 0.0313 (9)
H6AA −0.014605 −0.012152 0.034615 0.047*
H6AB 0.116771 −0.082361 0.061285 0.047*
H6AC 0.034027 −0.075865 −0.079050 0.047*
C3A 0.1681 (3) 0.1569 (4) 0.1045 (3) 0.0240 (7)
H3AA 0.093960 0.187346 0.133558 0.029*
H3AB 0.210690 0.095956 0.167339 0.029*
C4B 0.8860 (4) 0.5380 (5) 0.5489 (4) 0.0274 (9)
H4B 0.811157 0.552556 0.585628 0.033*
C2A 0.2556 (3) 0.2656 (4) 0.1022 (3) 0.0219 (7)
H2A 0.217645 0.319994 0.029534 0.026*
C3B 0.8591 (3) 0.4281 (4) 0.4578 (3) 0.0235 (7)
H3BA 0.930140 0.418688 0.415750 0.028*
H3BB 0.854849 0.351957 0.507577 0.028*
C2B 0.7402 (3) 0.4372 (3) 0.3568 (3) 0.0198 (7)
H2B 0.743701 0.514475 0.306735 0.024*
C1A 0.2819 (3) 0.3453 (5) 0.2205 (4) 0.0206 (10)

Bis(L-leucinium) hexachloridostannate(IV) dihydrate . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Sn1 0.02014 (10) 0.01690 (10) 0.01714 (9) 0.00183 (9) 0.00416 (6) 0.00103 (6)
Cl5 0.0400 (5) 0.0191 (5) 0.0216 (5) 0.0049 (4) 0.0034 (4) −0.0014 (4)
Cl2 0.0463 (6) 0.0236 (6) 0.0180 (5) 0.0054 (4) 0.0025 (4) 0.0018 (5)
Cl4 0.0347 (5) 0.0249 (6) 0.0208 (5) 0.0069 (4) −0.0017 (4) 0.0037 (5)
Cl1 0.0262 (5) 0.0373 (7) 0.0479 (7) −0.0030 (4) 0.0144 (4) 0.0040 (5)
Cl6 0.0451 (6) 0.0177 (5) 0.0243 (5) 0.0020 (4) 0.0108 (4) −0.0003 (5)
Cl3 0.0214 (4) 0.0423 (8) 0.0365 (6) −0.0018 (4) 0.0076 (4) 0.0016 (5)
O2B 0.0273 (14) 0.0302 (17) 0.0378 (17) −0.0067 (13) 0.0124 (12) −0.0103 (15)
O1B 0.0242 (12) 0.043 (2) 0.0310 (14) −0.0022 (13) 0.0118 (10) −0.0100 (15)
O2W 0.0369 (17) 0.040 (2) 0.0329 (18) 0.0103 (15) 0.0050 (14) −0.0023 (17)
O1A 0.0240 (13) 0.045 (2) 0.0383 (17) −0.0010 (12) 0.0077 (12) −0.0157 (15)
N1B 0.0181 (14) 0.0225 (18) 0.0216 (16) 0.0006 (13) 0.0017 (12) −0.0006 (15)
O1W 0.0373 (17) 0.040 (2) 0.0320 (18) 0.0051 (15) 0.0046 (14) −0.0062 (17)
N1A 0.0205 (15) 0.028 (2) 0.0271 (18) −0.0009 (14) 0.0086 (13) −0.0004 (16)
C4A 0.0170 (16) 0.028 (2) 0.0248 (19) 0.0019 (14) 0.0029 (14) −0.0025 (16)
O2A 0.0222 (13) 0.0346 (18) 0.0308 (16) −0.0059 (12) 0.0022 (12) −0.0057 (14)
C1B 0.0194 (14) 0.0223 (18) 0.0229 (16) 0.0035 (19) 0.0052 (12) 0.004 (2)
C5B 0.031 (2) 0.033 (3) 0.048 (3) −0.0072 (18) 0.0033 (19) −0.004 (2)
C5A 0.032 (2) 0.034 (2) 0.033 (2) −0.0001 (18) −0.0029 (17) 0.0020 (19)
C6B 0.028 (2) 0.059 (3) 0.033 (2) 0.001 (2) −0.0021 (18) −0.004 (2)
C6A 0.026 (2) 0.029 (2) 0.038 (2) −0.0026 (17) 0.0049 (17) −0.0039 (18)
C3A 0.0216 (17) 0.0269 (19) 0.0234 (16) −0.0024 (14) 0.0042 (13) 0.0026 (15)
C4B 0.0179 (17) 0.035 (2) 0.028 (2) −0.0027 (16) 0.0015 (14) −0.0082 (18)
C2A 0.0180 (15) 0.0249 (19) 0.0224 (17) 0.0003 (14) 0.0033 (13) 0.0015 (15)
C3B 0.0169 (15) 0.0259 (19) 0.0264 (17) 0.0040 (13) 0.0016 (14) 0.0011 (14)
C2B 0.0151 (15) 0.0201 (18) 0.0243 (17) 0.0002 (13) 0.0038 (13) 0.0026 (14)
C1A 0.0209 (15) 0.020 (3) 0.0202 (16) 0.0003 (15) 0.0029 (12) 0.0044 (16)

Bis(L-leucinium) hexachloridostannate(IV) dihydrate . Geometric parameters (Å, º)

Sn1—Cl5 2.4259 (13) O2A—C1A 1.202 (5)
Sn1—Cl2 2.4084 (11) C1B—C2B 1.517 (7)
Sn1—Cl4 2.4045 (11) C5B—H5BA 0.9800
Sn1—Cl1 2.4387 (11) C5B—H5BB 0.9800
Sn1—Cl6 2.4171 (14) C5B—H5BC 0.9800
Sn1—Cl3 2.4338 (11) C5B—C4B 1.523 (7)
O2B—C1B 1.206 (6) C5A—H5AA 0.9800
O1B—H1B 0.8400 C5A—H5AB 0.9800
O1B—C1B 1.313 (4) C5A—H5AC 0.9800
O2W—H2WA 0.8700 C6B—H6BA 0.9800
O2W—H2WB 0.8700 C6B—H6BB 0.9800
O1A—H1A 0.8400 C6B—H6BC 0.9800
O1A—C1A 1.301 (5) C6B—C4B 1.522 (6)
N1B—H1BA 0.9100 C6A—H6AA 0.9800
N1B—H1BB 0.9100 C6A—H6AB 0.9800
N1B—H1BC 0.9100 C6A—H6AC 0.9800
N1B—C2B 1.502 (4) C3A—H3AA 0.9900
O1W—H1WA 0.8704 C3A—H3AB 0.9900
O1W—H1WB 0.8696 C3A—C2A 1.519 (5)
N1A—H1AA 0.9100 C4B—H4B 1.0000
N1A—H1AB 0.9100 C4B—C3B 1.531 (6)
N1A—H1AC 0.9100 C2A—H2A 1.0000
N1A—C2A 1.500 (5) C2A—C1A 1.521 (6)
C4A—H4A 1.0000 C3B—H3BA 0.9900
C4A—C5A 1.515 (6) C3B—H3BB 0.9900
C4A—C6A 1.533 (6) C3B—C2B 1.518 (5)
C4A—C3A 1.532 (5) C2B—H2B 1.0000
Cl5—Sn1—Cl1 91.30 (5) H5AA—C5A—H5AB 109.5
Cl5—Sn1—Cl3 88.62 (4) H5AA—C5A—H5AC 109.5
Cl2—Sn1—Cl5 90.58 (5) H5AB—C5A—H5AC 109.5
Cl2—Sn1—Cl1 89.00 (4) H6BA—C6B—H6BB 109.5
Cl2—Sn1—Cl6 90.02 (4) H6BA—C6B—H6BC 109.5
Cl2—Sn1—Cl3 90.58 (4) H6BB—C6B—H6BC 109.5
Cl4—Sn1—Cl5 89.20 (4) C4B—C6B—H6BA 109.5
Cl4—Sn1—Cl2 179.56 (5) C4B—C6B—H6BB 109.5
Cl4—Sn1—Cl1 91.38 (4) C4B—C6B—H6BC 109.5
Cl4—Sn1—Cl6 90.20 (5) C4A—C6A—H6AA 109.5
Cl4—Sn1—Cl3 89.04 (4) C4A—C6A—H6AB 109.5
Cl6—Sn1—Cl5 179.40 (5) C4A—C6A—H6AC 109.5
Cl6—Sn1—Cl1 88.77 (4) H6AA—C6A—H6AB 109.5
Cl6—Sn1—Cl3 91.32 (5) H6AA—C6A—H6AC 109.5
Cl3—Sn1—Cl1 179.57 (6) H6AB—C6A—H6AC 109.5
C1B—O1B—H1B 109.5 C4A—C3A—H3AA 108.4
H2WA—O2W—H2WB 104.5 C4A—C3A—H3AB 108.4
C1A—O1A—H1A 109.5 H3AA—C3A—H3AB 107.5
H1BA—N1B—H1BB 109.5 C2A—C3A—C4A 115.3 (3)
H1BA—N1B—H1BC 109.5 C2A—C3A—H3AA 108.4
H1BB—N1B—H1BC 109.5 C2A—C3A—H3AB 108.4
C2B—N1B—H1BA 109.5 C5B—C4B—H4B 108.5
C2B—N1B—H1BB 109.5 C5B—C4B—C3B 111.9 (4)
C2B—N1B—H1BC 109.5 C6B—C4B—C5B 110.6 (4)
H1WA—O1W—H1WB 109.5 C6B—C4B—H4B 108.5
H1AA—N1A—H1AB 109.5 C6B—C4B—C3B 108.8 (4)
H1AA—N1A—H1AC 109.5 C3B—C4B—H4B 108.5
H1AB—N1A—H1AC 109.5 N1A—C2A—C3A 111.1 (3)
C2A—N1A—H1AA 109.5 N1A—C2A—H2A 107.9
C2A—N1A—H1AB 109.5 N1A—C2A—C1A 106.5 (3)
C2A—N1A—H1AC 109.5 C3A—C2A—H2A 107.9
C5A—C4A—H4A 108.3 C3A—C2A—C1A 115.4 (3)
C5A—C4A—C6A 110.2 (3) C1A—C2A—H2A 107.9
C5A—C4A—C3A 112.6 (4) C4B—C3B—H3BA 108.3
C6A—C4A—H4A 108.3 C4B—C3B—H3BB 108.3
C3A—C4A—H4A 108.3 H3BA—C3B—H3BB 107.4
C3A—C4A—C6A 109.1 (3) C2B—C3B—C4B 115.8 (3)
O2B—C1B—O1B 125.1 (6) C2B—C3B—H3BA 108.3
O2B—C1B—C2B 122.5 (3) C2B—C3B—H3BB 108.3
O1B—C1B—C2B 112.4 (4) N1B—C2B—C1B 106.5 (3)
H5BA—C5B—H5BB 109.5 N1B—C2B—C3B 111.4 (3)
H5BA—C5B—H5BC 109.5 N1B—C2B—H2B 108.6
H5BB—C5B—H5BC 109.5 C1B—C2B—C3B 113.0 (3)
C4B—C5B—H5BA 109.5 C1B—C2B—H2B 108.6
C4B—C5B—H5BB 109.5 C3B—C2B—H2B 108.6
C4B—C5B—H5BC 109.5 O1A—C1A—C2A 113.3 (3)
C4A—C5A—H5AA 109.5 O2A—C1A—O1A 125.4 (4)
C4A—C5A—H5AB 109.5 O2A—C1A—C2A 121.3 (4)
C4A—C5A—H5AC 109.5
O2B—C1B—C2B—N1B 3.6 (6) C5B—C4B—C3B—C2B −66.6 (4)
O2B—C1B—C2B—C3B 126.2 (5) C5A—C4A—C3A—C2A −68.7 (4)
O1B—C1B—C2B—N1B −176.4 (4) C6B—C4B—C3B—C2B 170.9 (4)
O1B—C1B—C2B—C3B −53.9 (5) C6A—C4A—C3A—C2A 168.7 (3)
N1A—C2A—C1A—O1A −168.7 (4) C3A—C2A—C1A—O1A −44.9 (5)
N1A—C2A—C1A—O2A 13.0 (6) C3A—C2A—C1A—O2A 136.8 (4)
C4A—C3A—C2A—N1A −68.6 (4) C4B—C3B—C2B—N1B −62.0 (4)
C4A—C3A—C2A—C1A 170.1 (3) C4B—C3B—C2B—C1B 178.2 (3)

Bis(L-leucinium) hexachloridostannate(IV) dihydrate . Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1A—H1AA···Cl3i 0.91 2.78 3.470 (4) 133
N1A—H1AA···Cl5i 0.91 2.58 3.342 (4) 142
N1A—H1AB···Cl4ii 0.91 2.77 3.471 (4) 134
N1A—H1AB···Cl6ii 0.91 2.65 3.452 (4) 148
N1A—H1AC···O2A 0.91 2.17 2.620 (5) 110
N1A—H1AC···O2B 0.91 2.26 2.959 (5) 133
N1B—H1BA···O2A 0.91 1.99 2.873 (5) 164
N1B—H1BA···O2B 0.91 2.27 2.626 (5) 103
N1B—H1BB···Cl2 0.91 2.47 3.352 (4) 164
N1B—H1BC···Cl1iii 0.91 2.71 3.583 (4) 162
O1A—H1A···O1W 0.84 1.79 2.624 (5) 169
O1B—H1B···O2W 0.84 1.79 2.627 (6) 173
O1W—H1WA···Cl6iii 0.87 2.69 3.440 (3) 145
O1W—H1WB···Cl1 0.87 2.44 3.283 (4) 162
O2W—H2WA···Cl3ii 0.87 2.48 3.312 (4) 161
O2W—H2WB···Cl5i 0.87 2.63 3.393 (3) 147

Symmetry codes: (i) −x+1, y−1/2, −z; (ii) x, y−1, z; (iii) −x+1, y−1/2, −z+1.

Funding Statement

Funding for this research was provided by: Laboratoire de Technologie des Matériaux Avancés, Ecole Nationale Polytechnique de Constantine, Algérie ; Unité de Recherche de Chimie de l’Environnement, Moléculaire et Structurale UR.CHEMS ; DRSDT-Algeria .

References

  1. Anitha, K., Athimoolam, S. & Rajaram, R. K. (2005). Acta Cryst. E61, o1604–o1606.
  2. Bruker (2014). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst.42, 339–341.
  4. Fleck, M., Ghazaryan, V. V. & Petrosyan, A. M. (2013). Z. Kristallogr. Cryst. Mater.228, 240–249.
  5. Ghallab, R., Boutebdja, M., Dénès, G. & Merazig, H. (2020). Acta Cryst. E76, 1279–1283. [DOI] [PMC free article] [PubMed]
  6. Gheribi, R., Hadji, D., Ghallab, R., Medjani, M., Benslimane, M., Trifa, C., Dénès, G. & Merazig, H. (2022). J. Mol. Struct.1248, 131392.
  7. Janczak, J. & Perpétuo, G. J. (2007). Acta Cryst. C63, o117–o119. [DOI] [PubMed]
  8. Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst.48, 3–10. [DOI] [PMC free article] [PubMed]
  9. Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. [DOI] [PMC free article] [PubMed]
  10. Rajagopal, K., Krishnakumar, R. V., Subha Nandhini, M., Malathi, R., Rajan, S. S. & Natarajan, S. (2003). Acta Cryst. E59, o878–o880.
  11. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  12. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  13. Zeghouan, O., Bendjeddou, L., Cherouana, A., Dahaoui, S. & Lecomte, C. (2012). Acta Cryst. E68, o2959–o2960. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2414314625006765/hb4529sup1.cif

x-10-x250676-sup1.cif (418.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2414314625006765/hb4529Isup2.hkl

x-10-x250676-Isup2.hkl (442.2KB, hkl)

CCDC reference: 2478499

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from IUCrData are provided here courtesy of International Union of Crystallography

RESOURCES