Skip to main content
IUCrData logoLink to IUCrData
. 2025 Aug 19;10(Pt 8):x250734. doi: 10.1107/S2414314625007345

2-Oxo-2H-chromen-4-yl 4-ethyl­benzoate

Valentin Bationo a, Abel Landry Tebily b, Akoun Abou b,*, Charles Bavouma Sombié c, Rasmané Semdé c, Abdoulaye Djandé a
Editor: W T A Harrisond
PMCID: PMC12412682  PMID: 40917538

In the title compound, the dihedral angle between the coumarin ring system and the phenyl ring is 63.46 (5)°. In the crystal, the mol­ecules are linked by weak C—H⋯O hydrogen bonds and aromatic π–π stacking inter­actions

Keywords: crystal structure, hydrogen bonding, π–π stacking, centrosymmetric dimer

Abstract

In the title compound, C18H14O4, the dihedral angle between the coumarin moiety and the phenyl fragment is 63.46 (5)°. In the crystal, the mol­ecules are linked by weak C—H⋯O hydrogen bonds and aromatic π–π stacking inter­actions. A short C=O⋯π [O⋯π = 3.2667 (10) Å] contact is also observed.graphic file with name x-10-x250734-scheme1-3D1.jpg

Structure description

Coumarins are a broad class of over 800 naturally occurring chemicals and are frequently found in plants like sweet clover and tonka beans (Ziarani et al., 2018). Some coumarins have therapeutic potential due to their wide range of biological activities (Akkol et al. 2020) such as anti-inflammatory action (Tuan Anh et al., 2017; Tosun et al., 2009). As part of our work in this area, we now describe the synthesis and structure of the title compound (I).

As expected, the C1–C9/O1 coumarin ring system in (I) (Fig. 1) is almost planar (r.m.s deviation = 0.004 Å) and is oriented at an angle of 63.46 (5)° with respect to the C11–C16 ring. Atom C18 lies close to the latter ring plane [deviation = −0.166 (1) Å]. The pyrone ring shows the usual asymmetric bond lengths for C3—C2 [1.3443 (15) Å] and C2—C1 [1.4508 (15) Å], which are shorter and longer, respectively, than would be expected for a Car—Car bond (Gomes et al., 2016; Koulabiga et al., 2024).

Figure 1.

Figure 1

The mol­ecular structure of (I) with displacement ellipsoids drawn at the 50% probability level.

In the extended structure of (I) (Figs. 2 and 3), the mol­ecules are linked by weak C—H⋯O hydrogen bonds (Table 1). The C2—H2⋯O2 inter­action results in the formation of inversion dimers, which are characterized by an Inline graphic(8) graph-set motif. Subsequently, these dimers combine with the C9—H9⋯O4 and C16—H16⋯O2 hydrogen bonds to form an Inline graphic(16) graph-set motif. An aromatic π–π stacking inter­action is observed between the C1–C5/O1 and C4–C9 rings [centroid–centroid separation = 3.6514 (7) Å, slippage = 1.613 Å] and a short C=O⋯π contact of 3.2667 (10) Å occurs (Table 1).

Figure 2.

Figure 2

A view of the crystal packing of (I), showing C=O⋯π and π–π stacking inter­actions (dashed lines). The green dots are centroids of rings.

Figure 3.

Figure 3

Detail of the packing of (I) showing the association of mol­ecules into centrosymmetric dimers through pairwise C—H⋯O hydrogen bonds. This generates Inline graphic(8) and Inline graphic(16) graph-set motifs that extend along the a-axis direction. H atoms not involved in hydrogen bonding have been omitted for clarity.

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the C1–C5/O1 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O2i 0.93 2.49 3.4223 (14) 176
C9—H9⋯O4ii 0.93 2.57 3.4164 (14) 151
C16—H16⋯O2iii 0.93 2.54 3.4436 (14) 163
C1—O2⋯Cg1iv 1.22 (1) 3.27 (1) 3.5408 (14) 93 (1)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Synthesis and crystallization

To a solution of 4-ethyl­benzoyl chloride (0.95 ml, 6.2 mmol, 1 equiv.) in dried tetra­hydro­furan (30 ml) was added dried tri­ethyl­amine (2.6 ml, 3 equiv.) and 4-hy­droxy­coumarin (1.00 g, 6.17 mmol, 1 equiv.) in small portions over 30 min. The mixture was then refluxed for 4 h under stirring and poured into 40 ml of chloro­form. The solution was acidified with dilute hydro­chloric acid until its discoloration. The organic layer was extracted, concentrated in a vacuum until a slight cloudiness was obtained and then cooled in an ice bath. The resulting precipitate was filtered off with suction, washed with petroleum ether and recrystallized from a chloro­form–hexane solvent mixture (1:3) giving the title compound (1.12 g, yield 68%, m.p. 459–461 K). Colorless prisms appropriate for single-crystal X-ray diffraction analysis were obtained by slow evaporation of an acetone solution.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

Table 2. Experimental details.

Crystal data
Chemical formula C18H14O4
M r 294.29
Crystal system, space group Triclinic, PInline graphic
Temperature (K) 296
a, b, c (Å) 4.2781 (4), 10.7096 (9), 15.3525 (13)
α, β, γ (°) 84.816 (3), 86.728 (3), 83.925 (3)
V3) 695.79 (11)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.10
Crystal size (mm) 0.33 × 0.16 × 0.07
 
Data collection
Diffractometer SuperNova, Dual, Cu at home/near, AtlasS2
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2022)
Tmin, Tmax 0.956, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 59779, 4332, 3675
R int 0.037
(sin θ/λ)max−1) 0.721
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.144, 1.11
No. of reflections 4332
No. of parameters 200
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.32, −0.28

Computer programs: CrysAlis PRO (Rigaku OD, 2022), SHELXT2018/2 (Sheldrick, 2015a), PLATON (Spek, 2020) and WinGX (Farrugia, 2012), SHELXL2018/3 (Sheldrick, 2015b) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2414314625007345/hb4531sup1.cif

x-10-x250734-sup1.cif (1.7MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2414314625007345/hb4531Isup3.hkl

x-10-x250734-Isup3.hkl (345KB, hkl)
x-10-x250734-Isup3.cml (5.6KB, cml)

Supporting information file. DOI: 10.1107/S2414314625007345/hb4531Isup3.cml

CCDC reference: 2481234

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Institute Jean Barriol (Université de Lorraine, France) for the X-ray diffraction measurements.

full crystallographic data

2-Oxo-2H-chromen-4-yl 4-ethylbenzoate . Crystal data

C18H14O4 F(000) = 308
Mr = 294.29 Dx = 1.405 Mg m3
Triclinic, P1 Melting point = 459–461 K
a = 4.2781 (4) Å Mo Kα radiation, λ = 0.71073 Å
b = 10.7096 (9) Å Cell parameters from 4332 reflections
c = 15.3525 (13) Å θ = 4.5–61.7°
α = 84.816 (3)° µ = 0.10 mm1
β = 86.728 (3)° T = 296 K
γ = 83.925 (3)° Prism, colorless
V = 695.79 (11) Å3 0.33 × 0.16 × 0.07 mm
Z = 2

2-Oxo-2H-chromen-4-yl 4-ethylbenzoate . Data collection

SuperNova, Dual, Cu at home/near, AtlasS2 diffractometer 4332 independent reflections
Radiation source: micro-focus sealed X-ray tube 3675 reflections with I > 2σ(I)
Detector resolution: 5.3048 pixels mm-1 Rint = 0.037
ω scans θmax = 30.8°, θmin = 2.2°
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2022) h = −6→6
Tmin = 0.956, Tmax = 1.000 k = −15→15
59779 measured reflections l = −22→22

2-Oxo-2H-chromen-4-yl 4-ethylbenzoate . Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.049 w = 1/[σ2(Fo2) + (0.0753P)2 + 0.2292P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.144 (Δ/σ)max < 0.001
S = 1.11 Δρmax = 0.32 e Å3
4332 reflections Δρmin = −0.28 e Å3
200 parameters Extinction correction: SHELXL2018/3 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraints Extinction coefficient: 0.016 (6)
Primary atom site location: structure-invariant direct methods

2-Oxo-2H-chromen-4-yl 4-ethylbenzoate . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. The H atoms were placed at calculated positions [C—H = 0.93–0.97 Å] and refined using the riding model approximation with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C).

2-Oxo-2H-chromen-4-yl 4-ethylbenzoate . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 1.33648 (19) 0.16608 (7) 0.02913 (5) 0.02074 (17)
O3 0.87511 (19) 0.43581 (7) 0.18225 (5) 0.02160 (18)
O2 1.5944 (2) 0.31182 (8) −0.04602 (5) 0.0267 (2)
O4 1.1515 (2) 0.36404 (8) 0.30123 (5) 0.02480 (19)
C11 0.7673 (2) 0.54303 (9) 0.30997 (7) 0.0195 (2)
C3 1.0391 (3) 0.34377 (10) 0.13411 (7) 0.0193 (2)
C5 1.1274 (2) 0.12891 (10) 0.09534 (7) 0.0187 (2)
C10 0.9530 (2) 0.43848 (10) 0.26765 (7) 0.0194 (2)
C2 1.2424 (3) 0.38058 (10) 0.06923 (7) 0.0215 (2)
H2 1.280225 0.464811 0.060129 0.026*
C14 0.4429 (3) 0.73961 (10) 0.39781 (7) 0.0207 (2)
C4 0.9691 (2) 0.21466 (9) 0.15046 (7) 0.0190 (2)
C7 0.8695 (3) −0.03992 (10) 0.16993 (7) 0.0232 (2)
H7 0.834208 −0.124535 0.176664 0.028*
C13 0.6335 (3) 0.64501 (11) 0.44302 (7) 0.0242 (2)
H13 0.652704 0.646856 0.502909 0.029*
C6 1.0813 (3) 0.00155 (10) 0.10473 (7) 0.0209 (2)
H6 1.190075 −0.054437 0.068072 0.025*
C17 0.2679 (3) 0.84887 (10) 0.44238 (8) 0.0251 (2)
H17A 0.050253 0.857056 0.426309 0.030*
H17B 0.356950 0.925553 0.419603 0.030*
C15 0.4150 (3) 0.73322 (10) 0.30800 (7) 0.0230 (2)
H15 0.287568 0.795705 0.277112 0.028*
C16 0.5729 (3) 0.63586 (10) 0.26384 (7) 0.0214 (2)
H16 0.549281 0.632588 0.204266 0.026*
C1 1.4032 (3) 0.28936 (10) 0.01336 (7) 0.0211 (2)
C12 0.7957 (3) 0.54759 (10) 0.39939 (7) 0.0243 (2)
H12 0.923771 0.485241 0.430213 0.029*
C9 0.7567 (3) 0.17035 (10) 0.21634 (7) 0.0214 (2)
H9 0.648923 0.225798 0.253545 0.026*
C8 0.7082 (3) 0.04399 (11) 0.22575 (7) 0.0239 (2)
H8 0.567671 0.014693 0.269405 0.029*
C18 0.2734 (3) 0.83910 (12) 0.54170 (8) 0.0312 (3)
H18A 0.156830 0.912340 0.563515 0.047*
H18B 0.179577 0.765055 0.565512 0.047*
H18C 0.487067 0.833730 0.558788 0.047*

2-Oxo-2H-chromen-4-yl 4-ethylbenzoate . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0244 (4) 0.0187 (3) 0.0191 (4) −0.0020 (3) 0.0021 (3) −0.0037 (3)
O3 0.0271 (4) 0.0181 (3) 0.0193 (4) 0.0023 (3) −0.0017 (3) −0.0051 (3)
O2 0.0312 (4) 0.0266 (4) 0.0220 (4) −0.0046 (3) 0.0046 (3) −0.0019 (3)
O4 0.0271 (4) 0.0226 (4) 0.0243 (4) 0.0039 (3) −0.0043 (3) −0.0053 (3)
C11 0.0217 (5) 0.0159 (4) 0.0211 (5) −0.0017 (3) −0.0009 (4) −0.0030 (3)
C3 0.0222 (5) 0.0175 (4) 0.0180 (4) 0.0011 (3) −0.0030 (3) −0.0038 (3)
C5 0.0196 (4) 0.0188 (4) 0.0177 (4) −0.0009 (3) −0.0013 (3) −0.0023 (3)
C10 0.0218 (5) 0.0176 (4) 0.0191 (4) −0.0025 (3) −0.0008 (3) −0.0029 (3)
C2 0.0260 (5) 0.0180 (4) 0.0207 (5) −0.0026 (4) −0.0020 (4) −0.0023 (3)
C14 0.0228 (5) 0.0164 (4) 0.0231 (5) −0.0024 (4) 0.0008 (4) −0.0028 (3)
C4 0.0205 (5) 0.0179 (4) 0.0185 (4) −0.0008 (3) −0.0022 (3) −0.0025 (3)
C7 0.0262 (5) 0.0187 (4) 0.0248 (5) −0.0034 (4) −0.0041 (4) 0.0002 (4)
C13 0.0289 (5) 0.0221 (5) 0.0215 (5) 0.0023 (4) −0.0032 (4) −0.0057 (4)
C6 0.0232 (5) 0.0173 (4) 0.0223 (5) −0.0001 (4) −0.0033 (4) −0.0036 (3)
C17 0.0292 (6) 0.0182 (5) 0.0271 (5) 0.0011 (4) 0.0019 (4) −0.0042 (4)
C15 0.0277 (5) 0.0169 (4) 0.0235 (5) 0.0010 (4) −0.0018 (4) −0.0009 (4)
C16 0.0265 (5) 0.0183 (4) 0.0193 (4) −0.0013 (4) −0.0012 (4) −0.0015 (3)
C1 0.0239 (5) 0.0200 (5) 0.0192 (4) −0.0022 (4) −0.0016 (4) −0.0012 (3)
C12 0.0289 (5) 0.0205 (5) 0.0230 (5) 0.0037 (4) −0.0046 (4) −0.0041 (4)
C9 0.0220 (5) 0.0222 (5) 0.0200 (5) −0.0018 (4) −0.0006 (4) −0.0027 (4)
C8 0.0249 (5) 0.0249 (5) 0.0221 (5) −0.0057 (4) −0.0012 (4) 0.0004 (4)
C18 0.0400 (7) 0.0250 (5) 0.0277 (6) 0.0048 (5) 0.0022 (5) −0.0085 (4)

2-Oxo-2H-chromen-4-yl 4-ethylbenzoate . Geometric parameters (Å, º)

O1—C5 1.3750 (13) C7—C6 1.3861 (15)
O1—C1 1.3775 (13) C7—C8 1.3995 (16)
O3—C10 1.3747 (13) C7—H7 0.9300
O3—C3 1.3915 (12) C13—C12 1.3924 (15)
O2—C1 1.2146 (13) C13—H13 0.9300
O4—C10 1.2062 (13) C6—H6 0.9300
C11—C12 1.3908 (15) C17—C18 1.5202 (17)
C11—C16 1.3954 (15) C17—H17A 0.9700
C11—C10 1.4802 (14) C17—H17B 0.9700
C3—C2 1.3443 (15) C15—C16 1.3891 (15)
C3—C4 1.4425 (14) C15—H15 0.9300
C5—C6 1.3922 (14) C16—H16 0.9300
C5—C4 1.4004 (14) C12—H12 0.9300
C2—C1 1.4508 (15) C9—C8 1.3842 (15)
C2—H2 0.9300 C9—H9 0.9300
C14—C13 1.3912 (15) C8—H8 0.9300
C14—C15 1.3991 (15) C18—H18A 0.9600
C14—C17 1.5161 (15) C18—H18B 0.9600
C4—C9 1.4047 (15) C18—H18C 0.9600
C5—O1—C1 122.05 (8) C5—C6—H6 120.7
C10—O3—C3 117.26 (8) C14—C17—C18 115.86 (9)
C12—C11—C16 119.86 (10) C14—C17—H17A 108.3
C12—C11—C10 117.31 (9) C18—C17—H17A 108.3
C16—C11—C10 122.83 (9) C14—C17—H17B 108.3
C2—C3—O3 118.14 (9) C18—C17—H17B 108.3
C2—C3—C4 122.17 (9) H17A—C17—H17B 107.4
O3—C3—C4 119.51 (9) C16—C15—C14 121.64 (10)
O1—C5—C6 116.49 (9) C16—C15—H15 119.2
O1—C5—C4 121.75 (9) C14—C15—H15 119.2
C6—C5—C4 121.75 (10) C15—C16—C11 119.17 (10)
O4—C10—O3 122.50 (9) C15—C16—H16 120.4
O4—C10—C11 126.07 (10) C11—C16—H16 120.4
O3—C10—C11 111.42 (9) O2—C1—O1 116.76 (10)
C3—C2—C1 120.23 (10) O2—C1—C2 125.71 (10)
C3—C2—H2 119.9 O1—C1—C2 117.53 (9)
C1—C2—H2 119.9 C11—C12—C13 120.35 (10)
C13—C14—C15 118.37 (10) C11—C12—H12 119.8
C13—C14—C17 122.29 (10) C13—C12—H12 119.8
C15—C14—C17 119.34 (10) C8—C9—C4 119.86 (10)
C5—C4—C9 118.73 (9) C8—C9—H9 120.1
C5—C4—C3 116.26 (9) C4—C9—H9 120.1
C9—C4—C3 125.01 (9) C9—C8—C7 120.35 (10)
C6—C7—C8 120.80 (10) C9—C8—H8 119.8
C6—C7—H7 119.6 C7—C8—H8 119.8
C8—C7—H7 119.6 C17—C18—H18A 109.5
C14—C13—C12 120.59 (10) C17—C18—H18B 109.5
C14—C13—H13 119.7 H18A—C18—H18B 109.5
C12—C13—H13 119.7 C17—C18—H18C 109.5
C7—C6—C5 118.50 (10) H18A—C18—H18C 109.5
C7—C6—H6 120.7 H18B—C18—H18C 109.5
C10—O3—C3—C2 −110.14 (11) C8—C7—C6—C5 −0.71 (16)
C10—O3—C3—C4 74.63 (12) O1—C5—C6—C7 −179.21 (9)
C1—O1—C5—C6 −179.77 (9) C4—C5—C6—C7 0.81 (16)
C1—O1—C5—C4 0.22 (15) C13—C14—C17—C18 −8.76 (16)
C3—O3—C10—O4 −0.98 (15) C15—C14—C17—C18 171.64 (11)
C3—O3—C10—C11 178.33 (8) C13—C14—C15—C16 −0.28 (17)
C12—C11—C10—O4 −8.15 (17) C17—C14—C15—C16 179.33 (10)
C16—C11—C10—O4 170.94 (11) C14—C15—C16—C11 −0.84 (17)
C12—C11—C10—O3 172.57 (9) C12—C11—C16—C15 1.29 (17)
C16—C11—C10—O3 −8.34 (14) C10—C11—C16—C15 −177.78 (10)
O3—C3—C2—C1 −175.83 (9) C5—O1—C1—O2 179.08 (9)
C4—C3—C2—C1 −0.73 (16) C5—O1—C1—C2 −0.34 (15)
O1—C5—C4—C9 179.49 (9) C3—C2—C1—O2 −178.76 (11)
C6—C5—C4—C9 −0.53 (16) C3—C2—C1—O1 0.60 (16)
O1—C5—C4—C3 −0.30 (15) C16—C11—C12—C13 −0.62 (17)
C6—C5—C4—C3 179.68 (9) C10—C11—C12—C13 178.49 (10)
C2—C3—C4—C5 0.57 (15) C14—C13—C12—C11 −0.52 (18)
O3—C3—C4—C5 175.61 (9) C5—C4—C9—C8 0.14 (16)
C2—C3—C4—C9 −179.20 (10) C3—C4—C9—C8 179.91 (10)
O3—C3—C4—C9 −4.17 (16) C4—C9—C8—C7 −0.05 (16)
C15—C14—C13—C12 0.96 (17) C6—C7—C8—C9 0.34 (17)
C17—C14—C13—C12 −178.64 (11)

2-Oxo-2H-chromen-4-yl 4-ethylbenzoate . Hydrogen-bond geometry (Å, º)

Cg1 is the centroid of the C1–C5/O1 ring.

D—H···A D—H H···A D···A D—H···A
C2—H2···O2i 0.93 2.49 3.4223 (14) 176
C9—H9···O4ii 0.93 2.57 3.4164 (14) 151
C16—H16···O2iii 0.93 2.54 3.4436 (14) 163
C1—O2···Cg1iv 1.22 (1) 3.27 (1) 3.5408 (14) 93 (1)

Symmetry codes: (i) −x+3, −y+1, −z; (ii) x−1, y, z; (iii) −x+2, −y+1, −z; (iv) x+1, y, z.

References

  1. Akkol, E. K., Genç, Y., Karpuz, B., Sobarzo-Sánchez, E. & Capasso, R. (2020). Cancers (Basel)12, 1–25. [DOI] [PMC free article] [PubMed]
  2. Farrugia, L. J. (2012). J. Appl. Cryst.45, 849–854.
  3. Gomes, L. R., Low, J. N., Fonseca, A., Matos, M. J. & Borges, F. (2016). Acta Cryst. E72, 926–932. [DOI] [PMC free article] [PubMed]
  4. Koulabiga, Z., Yao, K. H., Abou, A., Djandé, A., Giorgi, M. & Coussan, S. (2024). Am. J. Org. Chem.12, 1–19.
  5. Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
  6. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  7. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  8. Spek, A. L. (2020). Acta Cryst. E76, 1–11. [DOI] [PMC free article] [PubMed]
  9. Tosun, A., Akkol, E. K. & Yesilada, E. (2009). Z. Naturforsch., C: J. Biosci.64, 56–62. [DOI] [PubMed]
  10. Tuan Anh, H. L., Kim, D.-C., Ko, W., Ha, T. M., Nhiem, N. X., Yen, P. H., Tai, B. H., Truong, L. H., Long, V. N., Gioi, T., Hong Quang, T., Minh, C. V., Oh, H., Kim, Y. C. & Kiem, P. V. (2017). Pharm. Biol.55, 1195–1201. [DOI] [PMC free article] [PubMed]
  11. Westrip, S. P. (2010). J. Appl. Cryst.43, 920–925.
  12. Ziarani, G. M., Moradi, R., Lashgari, N. & Kruger, H. G. (2018). Metal-Free Synthetic Organic Dyes ch. 7, Coumarin dyes pp. 117–125. https://doi.org/10.1016/b978-0-12-815647-6.00007-8.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2414314625007345/hb4531sup1.cif

x-10-x250734-sup1.cif (1.7MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2414314625007345/hb4531Isup3.hkl

x-10-x250734-Isup3.hkl (345KB, hkl)
x-10-x250734-Isup3.cml (5.6KB, cml)

Supporting information file. DOI: 10.1107/S2414314625007345/hb4531Isup3.cml

CCDC reference: 2481234

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from IUCrData are provided here courtesy of International Union of Crystallography

RESOURCES