Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2025 Aug 5;81(Pt 9):797–800. doi: 10.1107/S2056989025006772

Synthesis and crystal structure of 4-benzyl-4-pentyl­morpholin-4-ium chloride

Zarifa Yakhshilikova a, Tursunali Kholikov a, Sherzod Zhurakulov b, Kambarali Turgunov b,c,*
Editor: S P Kelleyd
PMCID: PMC12412693  PMID: 40918563

An investigation is reported of the synthesis and crystal structure of 4-benzyl-4-pentyl­morpholin-4-ium chloride

Keywords: crystal structure, mol­ecular structure, N-pentyl morpholine, benzyl chloride, quaternary morpholine halide

Abstract

The reaction of N-pentyl­morpholine with benzyl chloride resulted in the title compound, C16H26ClNO, which crystallizes in the ortho­rhom­bic space group Pna21 with Z = 4. In the crystal, the chloride ions are surrounded by four cations, forming layers.

1. Chemical context

Morpholine is a multipurpose chemical that is used as a solvent for resins, dyes and waxes. One of its most important uses is as a chemical inter­mediate in the preparation of pesticides (Muruganandam et al., 2009). A number of morpholine derivatives have been described as analgesics and local anesthetics. The morpholino­methyl derivative of pyrizinamide (morphozinamide) has been found to be more effective in the treatment of tuberculosis than pyrizinamide (Sedavkina et al., 1984). Quaternary morpholine halides were found to achieve total disinfection against Staphylococcus aureus ATCC 25923 and Escherichia coli ATCC 25922. (Morandini et al., 2021). Additionally, most drugs containing a morpholine moiety in their structure have been found to exhibit significant biological properties (Basavaraja et al., 2010). Quaternary morpholine halides are valuable precursors for the preparation of ionic liquids (ILs) by ion metathesis (Kim et al., 2005). The excellent conductivity, broad electrochemical window, thermal stability, and low volatility of ILs have made them promising media for electrochemical processes (Zein El Abedin et al., 2004, 2005). In particular, ILs based on the morpholinium cation are favored because of their low cost, easy synthesis, and electrochemical stability (Kim et al., 2006). We report here a new example structure of this class.1.

2. Structural commentary

The title compound crystallizes in the ortho­rhom­bic space group Pna21 with Z = 4. The asymmetric unit consists of a 4-benzyl-4-pentyl­morpholin-4-ium cation with a quaternary nitro­gen atom and the chloride counter-anion, which ensures neutrality (Fig. 1). The average C—N bond length of 1.521 Å and C—N—C angle of 109° are consistent with the geometry of a charged quaternary nitro­gen atom found in different structures (Rousselin & Clavel, 2024). In the cation, the morpholinium ring adopts a chair conformation with puckering parameters (Cremer & Pople, 1975) of the ring Q = 0.5711 (18) Å, θ = 4.26 (18)°, φ = 29 (2)°. Weak intra­molecular C—H ⋯Cl hydrogen bonds help to consolidate the conformation of the mol­ecule (Table 1). The pentyl group carbon atoms lie in a plane with an r.m.s. deviation of 0.0252 Å.

Figure 1.

Figure 1

The mol­ecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level.

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2B⋯Cl1i 0.97 2.78 3.708 (2) 160
C3—H3B⋯Cl1ii 0.97 2.78 3.645 (2) 149
C6—H6B⋯Cl1 0.97 2.77 3.477 (2) 130
C12—H12B⋯Cl1ii 0.97 2.75 3.639 (2) 153
C15—H15⋯Cg1iii 0.93 3.28 4.104 (3) 149

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

3. Supra­molecular features

The crystal packing is shown in Fig. 2, where four cations, accompanied by counter-ions, are arranged head-to-tail in the unit cell. An examination of the distribution of the positively charged nitro­gen atoms in the morpholinium cations and the chloride counter-ions shows that the crystal forms ion layers parallel to the bc plane, which corresponds to the planar surface of the monocrystal (Fig. 3). Within these layers, each nitro­gen atom forms short contacts with four chloride ions at distances of 3.938 (2), 4.657 (2), 4.892 (2), and 4.988 (2) Å. The chloride ions are separated by a distance of 6.3470 (4) Å, forming a two-dimensional structure typical of salts with a cyclo­butane-like puckering conformation. Each chloride ion is surrounded by methyl­ene groups, which form weak C—H⋯Cl hydrogen bonds (Table 1). The arrangement and geometry of the nitro­gen atoms are similar, with a nitro­gen–nitro­gen distance of 6.673 (1) Å (Fig. 4). These layers are packed through the partial inter­calation of alkyl and phenyl groups along the a axis, forming Car—H⋯π inter­actions (Table 1).

Figure 2.

Figure 2

The packing of the title compound.

Figure 3.

Figure 3

Screenshot from the face-indexing procedure (showing the unit-cell axes).

Figure 4.

Figure 4

Distribution of positively charged nitro­gen atoms and chloride counter-ions in a layer. Interatomic distances are given in Å.

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.46 of November 2024; Groom et al., 2016) for structures containing a morpholine fragment with three bonded nitro­gen atom returned 2745 hits. A search for structures containing a morpholin-4-ium fragment returned 188 hits, while a search for the morpholin-4-ium fragment with a benzyl substituent produced 10 matches. Homologous structures with methyl and ethyl substituents are MOKJOM (Bian, 2009a) and DOKYAE (Bian, 2009b). The C—N bond length in a neutral morpholine fragment is approximately 1.46–1.48 Å (Groom et al., 2016; Mutalliev et al., 2022) while the C—N bond in a morpholin-4-ium structure, as mentioned above, measures around 1.52 Å.

5. Synthesis and crystallization

N-pentyl morpholine, C9H19NO. To a 50 ml round-bottom flask, 4.95 g (0.06 mol) of morpholine were added. After adding 0.6 mol of ethanol as the solvent, 0.06 mol of potassium carbonate (K2CO3) and then 7.50 ml (0.06 mol) of pentyl bromide were added. The reaction mixture was heated under reflux with magnetic stirring for 1–9 h (monitored by TLC). Afterward, the solvent was evaporated. The remaining potassium carbonate in the solution was dissolved in water, and the reaction product was extracted with chloro­form (CHCl3). After the chloro­form had evaporated, the residue was dried under vacuum. Yield 6.5 g (72.0%).

1 H-NMR (600 MHz, CDCl3, δ, ppm J/Hz): 0.85 (3H, t, J = 7.2, H-11), 1.26 (4H, m, H-9,10), 1.44 (2H, kd, J = 7.4, 2.1, H-8), 2.27 (2H, dt, J = 7.9, 2.4, H-7), 2.39 (4H, s, H-2,6), 3.68 (4H, s, H-3,5).

13C NMR (150 MHz, CDCl3, δ, ppm): 14.09 (C-11), 22.41 (C-10), 26.31 (C-8), 29.89 (C-9), 53.62 (C-2,6), 59.29 (C-7), 66,93 (C-3,5).

IR spectrum (KBr, νmax, cm−1): 2957, 2931, 2856, 2807, 1708, 1454, 1358, 1271, 1118, 1071-1757, 1034, 1004, 914, 864, 796, 628.

4-Benzyl-4-pentyl­morpholin-4-ium chloride, C16H26ClNO. To a 50 ml round-bottom flask, 2 g (0.013 mol) of N-pentyl morpholine were added. After adding 5.4 ml (0.104 mol) of aceto­nitrile as the solvent, 0.013 mol of potassium carbonate (K2CO3) were added, followed by benzyl chloride in a 1:1 ratio, i.e., 0.013 mol. The reaction mixture was heated under reflux with magnetic stirring for 5 h (monitored by TLC). Then the solvent was evaporated, the remaining potassium carbonate was dissolved in water, and the reaction product was extracted with chloro­form (CHCl3). After the chloro­form had evaporated, the product was dried under vacuum. The obtained product was purified using column chromatography. Yield 3.16 g (94.0%), m.p. 467–469 K. Single crystals were obtained by slow evaporation of an acetone solution.

1 H-NMR (600 MHz, CDCl3, δ, ppm J/Hz): 0.87 (3H, t, J = 6.19, H-11), 1.33 (4H, m, H-9,10), 1.80 (2H, m, H-8), 3.40 (2H, dd, J = 9.63, 2.38, H-7), 3.58 (4H, m, H-1,5), 3.76 (2H, t, J = 10.41 H-12), 3.95 (2H, m, H-2), 4.07 (2H, d, J = 13.94 H-4), 7.40 (3H, m, H-16,17,15), 7.58 (2H, d, J = 4.95 H-18,14).

13C NMR (150 MHz, CDCl3, δ, ppm): 13.94 (C-18), 21.84 (C-17), 22.31 (C-15), 28.42 (C-16), 56.33 (C-2,4), 56.98 (C-7), 60,62 (C-1,5), 64,85 (C-8), 126.77 (C-9), 129.42 (C-11,13), 130.86 (C-12), 133.40 (C-10,14).

IR spectrum (KBr, νmax, cm−1): 2976, 2951, 2873, 1495, 1458, 1393, 1216, 1121, 1050, 1019, 991, 946, 932, 912, 886, 860, 764.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. H atoms were placed in calculated positions and refined as riding on their parent atoms [C—H = 0.93–0.97 Å with Uiso(H) = 1.2Ueq(C)].

Table 2. Experimental details.

Crystal data
Chemical formula C16H26NO+·Cl
M r 283.83
Crystal system, space group Orthorhombic, Pna21
Temperature (K) 293
a, b, c (Å) 21.8109 (4), 8.2459 (2), 8.8751 (2)
V3) 1596.19 (6)
Z 4
Radiation type Cu Kα
μ (mm−1) 2.05
Crystal size (mm) 0.30 × 0.10 × 0.05
 
Data collection
Diffractometer Bruker D8 VENTURE dual wavelength Mo/Cu
Absorption correction Multi-scan (SADABS; Krause et al., 2015)
Tmin, Tmax 0.620, 0.754
No. of measured, independent and observed [I > 2σ(I)] reflections 22843, 3168, 3064
R int 0.034
(sin θ/λ)max−1) 0.625
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.074, 1.06
No. of reflections 3168
No. of parameters 173
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.16, −0.21
Absolute structure Flack x determined using 1329 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013)
Absolute structure parameter 0.014 (6)

Computer programs: APEX5 (Bruker, 2023), SAINT (Bruker, 2019), SHELXT2018/2 (Sheldrick, 2015a), SHELXL2014/7 (Sheldrick, 2015b), Mercury (Macrae et al., 2020) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989025006772/ev2018sup1.cif

e-81-00797-sup1.cif (703.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989025006772/ev2018Isup2.hkl

e-81-00797-Isup2.hkl (253.1KB, hkl)
e-81-00797-Isup3.cml (6.1KB, cml)

Supporting information file. DOI: 10.1107/S2056989025006772/ev2018Isup3.cml

CCDC reference: 2477070

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

4-Benzyl-4-pentylmorpholin-4-ium chloride. Crystal data

C16H26NO+·Cl Dx = 1.181 Mg m3
Mr = 283.83 Melting point: 468(2) K
Orthorhombic, Pna21 Cu Kα radiation, λ = 1.54178 Å
a = 21.8109 (4) Å Cell parameters from 9944 reflections
b = 8.2459 (2) Å θ = 4.1–74.5°
c = 8.8751 (2) Å µ = 2.05 mm1
V = 1596.19 (6) Å3 T = 293 K
Z = 4 Plate, colourless
F(000) = 616 0.30 × 0.10 × 0.05 mm

4-Benzyl-4-pentylmorpholin-4-ium chloride. Data collection

Bruker D8 VENTURE dual wavelength Mo/Cu diffractometer 3168 independent reflections
Radiation source: microfocus X-ray source, Incoatec IµS 3.0 Microfocus Source 3064 reflections with I > 2σ(I)
Mirror monochromator Rint = 0.034
ω–φ scans θmax = 74.6°, θmin = 4.1°
Absorption correction: multi-scan (SADABS; Krause et al., 2015) h = −27→25
Tmin = 0.620, Tmax = 0.754 k = −9→10
22843 measured reflections l = −11→10

4-Benzyl-4-pentylmorpholin-4-ium chloride. Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.029 w = 1/[σ2(Fo2) + (0.039P)2 + 0.1423P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.074 (Δ/σ)max < 0.001
S = 1.06 Δρmax = 0.16 e Å3
3168 reflections Δρmin = −0.21 e Å3
173 parameters Absolute structure: Flack x determined using 1329 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
1 restraint Absolute structure parameter: 0.014 (6)

4-Benzyl-4-pentylmorpholin-4-ium chloride. Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

4-Benzyl-4-pentylmorpholin-4-ium chloride. Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.29346 (3) 0.33262 (7) 0.13961 (7) 0.06703 (18)
O1 0.37213 (7) 0.03995 (18) 0.55365 (16) 0.0541 (4)
N4 0.31419 (6) 0.31617 (17) 0.69908 (18) 0.0378 (3)
C2 0.35629 (9) 0.0320 (2) 0.7090 (2) 0.0489 (4)
H2A 0.3854 −0.0368 0.7614 0.059*
H2B 0.3159 −0.0160 0.7195 0.059*
C3 0.35639 (9) 0.1990 (2) 0.7799 (2) 0.0431 (4)
H3A 0.3978 0.2418 0.7786 0.052*
H3B 0.3437 0.1900 0.8843 0.052*
C5 0.32960 (9) 0.3091 (2) 0.5339 (2) 0.0421 (4)
H5A 0.3700 0.3553 0.5177 0.050*
H5B 0.3002 0.3736 0.4778 0.050*
C6 0.32864 (10) 0.1372 (2) 0.4759 (2) 0.0492 (4)
H6A 0.2880 0.0919 0.4892 0.059*
H6B 0.3380 0.1369 0.3690 0.059*
C7 0.24799 (8) 0.2672 (2) 0.7317 (2) 0.0428 (4)
H7A 0.2441 0.1512 0.7163 0.051*
H7B 0.2394 0.2890 0.8370 0.051*
C8 0.19981 (8) 0.3526 (2) 0.6362 (3) 0.0468 (4)
H8A 0.2029 0.3170 0.5323 0.056*
H8B 0.2064 0.4689 0.6391 0.056*
C9 0.13639 (8) 0.3120 (2) 0.6983 (3) 0.0502 (5)
H9A 0.1303 0.1956 0.6940 0.060*
H9B 0.1343 0.3447 0.8032 0.060*
C10 0.08545 (9) 0.3951 (3) 0.6118 (3) 0.0613 (6)
H10A 0.0858 0.3565 0.5085 0.074*
H10B 0.0933 0.5109 0.6098 0.074*
C11 0.02260 (11) 0.3655 (4) 0.6789 (4) 0.0841 (10)
H11A −0.0082 0.4107 0.6139 0.126*
H11B 0.0202 0.4160 0.7762 0.126*
H11C 0.0159 0.2509 0.6892 0.126*
C12 0.32319 (8) 0.4877 (2) 0.7628 (2) 0.0453 (4)
H12A 0.2952 0.5606 0.7114 0.054*
H12B 0.3120 0.4868 0.8685 0.054*
C13 0.38755 (8) 0.5547 (2) 0.7483 (2) 0.0437 (4)
C14 0.42946 (11) 0.5302 (3) 0.8635 (3) 0.0612 (6)
H14 0.4180 0.4735 0.9496 0.073*
C15 0.48864 (12) 0.5907 (3) 0.8500 (4) 0.0801 (8)
H15 0.5172 0.5711 0.9256 0.096*
C16 0.50513 (13) 0.6793 (3) 0.7253 (5) 0.0831 (9)
H16 0.5449 0.7188 0.7161 0.100*
C17 0.46324 (14) 0.7091 (3) 0.6154 (4) 0.0769 (8)
H17 0.4742 0.7719 0.5326 0.092*
C18 0.40444 (11) 0.6468 (2) 0.6257 (3) 0.0584 (5)
H18 0.3762 0.6673 0.5495 0.070*

4-Benzyl-4-pentylmorpholin-4-ium chloride. Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0981 (4) 0.0586 (3) 0.0444 (2) 0.0226 (3) 0.0031 (3) 0.0032 (3)
O1 0.0621 (9) 0.0502 (8) 0.0500 (8) 0.0156 (6) −0.0040 (7) −0.0115 (6)
N4 0.0375 (7) 0.0369 (7) 0.0389 (8) 0.0034 (5) −0.0024 (6) −0.0031 (6)
C2 0.0556 (11) 0.0426 (10) 0.0483 (11) 0.0106 (8) −0.0070 (9) −0.0021 (9)
C3 0.0452 (9) 0.0433 (9) 0.0409 (9) 0.0078 (7) −0.0066 (8) −0.0025 (8)
C5 0.0435 (9) 0.0452 (10) 0.0376 (9) 0.0017 (7) −0.0001 (7) −0.0011 (7)
C6 0.0596 (12) 0.0470 (10) 0.0409 (10) 0.0041 (8) −0.0070 (9) −0.0069 (8)
C7 0.0385 (8) 0.0427 (9) 0.0473 (9) 0.0002 (7) 0.0003 (7) 0.0010 (8)
C8 0.0396 (9) 0.0508 (9) 0.0501 (9) 0.0027 (7) −0.0008 (9) 0.0026 (10)
C9 0.0419 (9) 0.0503 (10) 0.0583 (12) −0.0014 (8) 0.0010 (9) −0.0007 (9)
C10 0.0434 (10) 0.0626 (12) 0.0780 (17) 0.0017 (9) 0.0005 (10) 0.0120 (11)
C11 0.0460 (12) 0.0957 (19) 0.110 (3) 0.0070 (11) 0.0087 (13) 0.0243 (17)
C12 0.0468 (9) 0.0386 (9) 0.0505 (11) 0.0034 (7) −0.0001 (8) −0.0088 (8)
C13 0.0460 (9) 0.0341 (8) 0.0510 (10) 0.0011 (7) 0.0000 (8) −0.0075 (7)
C14 0.0660 (13) 0.0534 (12) 0.0642 (13) −0.0100 (10) −0.0163 (12) 0.0010 (10)
C15 0.0621 (14) 0.0643 (15) 0.114 (2) −0.0117 (12) −0.0296 (15) −0.0005 (16)
C16 0.0594 (13) 0.0580 (14) 0.132 (3) −0.0143 (11) 0.0110 (17) −0.0100 (16)
C17 0.0891 (18) 0.0552 (13) 0.086 (2) −0.0174 (12) 0.0222 (16) 0.0003 (14)
C18 0.0734 (14) 0.0413 (9) 0.0604 (13) −0.0024 (9) −0.0029 (12) 0.0001 (11)

4-Benzyl-4-pentylmorpholin-4-ium chloride. Geometric parameters (Å, º)

O1—C6 1.421 (3) C9—H9A 0.9700
O1—C2 1.423 (2) C9—H9B 0.9700
N4—C5 1.506 (3) C10—C11 1.515 (3)
N4—C3 1.515 (2) C10—H10A 0.9700
N4—C7 1.527 (2) C10—H10B 0.9700
N4—C12 1.536 (2) C11—H11A 0.9600
C2—C3 1.514 (3) C11—H11B 0.9600
C2—H2A 0.9700 C11—H11C 0.9600
C2—H2B 0.9700 C12—C13 1.514 (3)
C3—H3A 0.9700 C12—H12A 0.9700
C3—H3B 0.9700 C12—H12B 0.9700
C5—C6 1.508 (3) C13—C18 1.378 (3)
C5—H5A 0.9700 C13—C14 1.386 (3)
C5—H5B 0.9700 C14—C15 1.389 (3)
C6—H6A 0.9700 C14—H14 0.9300
C6—H6B 0.9700 C15—C16 1.374 (5)
C7—C8 1.522 (3) C15—H15 0.9300
C7—H7A 0.9700 C16—C17 1.359 (5)
C7—H7B 0.9700 C16—H16 0.9300
C8—C9 1.526 (3) C17—C18 1.384 (4)
C8—H8A 0.9700 C17—H17 0.9300
C8—H8B 0.9700 C18—H18 0.9300
C9—C10 1.514 (3)
C6—O1—C2 109.55 (15) C10—C9—C8 112.49 (18)
C5—N4—C3 107.53 (14) C10—C9—H9A 109.1
C5—N4—C7 112.67 (14) C8—C9—H9A 109.1
C3—N4—C7 108.43 (14) C10—C9—H9B 109.1
C5—N4—C12 111.44 (14) C8—C9—H9B 109.1
C3—N4—C12 109.60 (13) H9A—C9—H9B 107.8
C7—N4—C12 107.12 (13) C9—C10—C11 113.1 (2)
O1—C2—C3 111.15 (17) C9—C10—H10A 109.0
O1—C2—H2A 109.4 C11—C10—H10A 109.0
C3—C2—H2A 109.4 C9—C10—H10B 109.0
O1—C2—H2B 109.4 C11—C10—H10B 109.0
C3—C2—H2B 109.4 H10A—C10—H10B 107.8
H2A—C2—H2B 108.0 C10—C11—H11A 109.5
C2—C3—N4 112.47 (14) C10—C11—H11B 109.5
C2—C3—H3A 109.1 H11A—C11—H11B 109.5
N4—C3—H3A 109.1 C10—C11—H11C 109.5
C2—C3—H3B 109.1 H11A—C11—H11C 109.5
N4—C3—H3B 109.1 H11B—C11—H11C 109.5
H3A—C3—H3B 107.8 C13—C12—N4 115.05 (14)
N4—C5—C6 111.45 (16) C13—C12—H12A 108.5
N4—C5—H5A 109.3 N4—C12—H12A 108.5
C6—C5—H5A 109.3 C13—C12—H12B 108.5
N4—C5—H5B 109.3 N4—C12—H12B 108.5
C6—C5—H5B 109.3 H12A—C12—H12B 107.5
H5A—C5—H5B 108.0 C18—C13—C14 119.1 (2)
O1—C6—C5 110.81 (16) C18—C13—C12 121.06 (19)
O1—C6—H6A 109.5 C14—C13—C12 119.7 (2)
C5—C6—H6A 109.5 C13—C14—C15 119.8 (3)
O1—C6—H6B 109.5 C13—C14—H14 120.1
C5—C6—H6B 109.5 C15—C14—H14 120.1
H6A—C6—H6B 108.1 C16—C15—C14 120.2 (3)
C8—C7—N4 115.16 (16) C16—C15—H15 119.9
C8—C7—H7A 108.5 C14—C15—H15 119.9
N4—C7—H7A 108.5 C17—C16—C15 119.9 (2)
C8—C7—H7B 108.5 C17—C16—H16 120.1
N4—C7—H7B 108.5 C15—C16—H16 120.1
H7A—C7—H7B 107.5 C16—C17—C18 120.6 (3)
C7—C8—C9 108.86 (19) C16—C17—H17 119.7
C7—C8—H8A 109.9 C18—C17—H17 119.7
C9—C8—H8A 109.9 C13—C18—C17 120.3 (2)
C7—C8—H8B 109.9 C13—C18—H18 119.9
C9—C8—H8B 109.9 C17—C18—H18 119.9
H8A—C8—H8B 108.3
C6—O1—C2—C3 −60.6 (2) C8—C9—C10—C11 −175.9 (2)
O1—C2—C3—N4 56.3 (2) C5—N4—C12—C13 −59.3 (2)
C5—N4—C3—C2 −51.0 (2) C3—N4—C12—C13 59.6 (2)
C7—N4—C3—C2 71.1 (2) C7—N4—C12—C13 176.99 (16)
C12—N4—C3—C2 −172.25 (16) N4—C12—C13—C18 92.4 (2)
C3—N4—C5—C6 52.57 (19) N4—C12—C13—C14 −90.8 (2)
C7—N4—C5—C6 −66.85 (19) C18—C13—C14—C15 −3.6 (3)
C12—N4—C5—C6 172.70 (15) C12—C13—C14—C15 179.6 (2)
C2—O1—C6—C5 62.8 (2) C13—C14—C15—C16 2.2 (4)
N4—C5—C6—O1 −60.2 (2) C14—C15—C16—C17 0.6 (4)
C5—N4—C7—C8 −50.2 (2) C15—C16—C17—C18 −2.0 (4)
C3—N4—C7—C8 −169.13 (16) C14—C13—C18—C17 2.3 (3)
C12—N4—C7—C8 72.7 (2) C12—C13—C18—C17 179.0 (2)
N4—C7—C8—C9 −171.03 (16) C16—C17—C18—C13 0.5 (4)
C7—C8—C9—C10 178.75 (19)

4-Benzyl-4-pentylmorpholin-4-ium chloride. Hydrogen-bond geometry (Å, º)

Cg1 is the centroid of the benzene ring.

D—H···A D—H H···A D···A D—H···A
C2—H2B···Cl1i 0.97 2.78 3.708 (2) 160
C3—H3B···Cl1ii 0.97 2.78 3.645 (2) 149
C6—H6B···Cl1 0.97 2.77 3.477 (2) 130
C12—H12B···Cl1ii 0.97 2.75 3.639 (2) 153
C15—H15···Cg1iii 0.93 3.28 4.104 (3) 149

Symmetry codes: (i) −x+1/2, y−1/2, z+1/2; (ii) x, y, z+1; (iii) −x+1, −y+1, z+1/2.

Funding Statement

This work was carried out within the framework of the Basic Scientific Research Program of the Academy of Sciences of the Republic of Uzbekistan.

References

  1. Basavaraja, H. S., Jayadevaiah, K. V., Mumtaz, M. H., Vijay Kumar, M. M. J. & Basavaraj, P. (2010). J. Pharm. Sci. & Res.2, 5–12.
  2. Bian, Y.-J. (2009a). Acta Cryst. E65, o38. [DOI] [PMC free article] [PubMed]
  3. Bian, Y.-J. (2009b). Acta Cryst. E65, o105. [DOI] [PMC free article] [PubMed]
  4. Bruker (2019). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Bruker (2023). APEX5. Bruker AXS Inc., Madison, Wisconsin, USA.
  6. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  7. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  8. Kim, K. S., Choi, S., Cha, J. H., Yeon, S. H. & Lee, H. (2006). J. Mater. Chem.16, 1315–1317.
  9. Kim, K. S., Park, S. Y., Yeon, S. H. & Lee, H. (2005). Electrochim. Acta50, 5673–5678.
  10. Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst.48, 3–10. [DOI] [PMC free article] [PubMed]
  11. Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst.53, 226–235. [DOI] [PMC free article] [PubMed]
  12. Morandini, A., Leonetti, B., Riello, P., Sole, R., Gatto, V., Caligiuri, I., Rizzolio, F. & Beghetto, V. (2021). ChemMedChem16, 3172–3176. [DOI] [PMC free article] [PubMed]
  13. Muruganandam, L., Rajeswari, S., Tamilvendan, D., Ramkumar, V. & Prabhu, G. V. (2009). Acta Cryst. E65, o578. [DOI] [PMC free article] [PubMed]
  14. Mutalliev, L. Z., Abdullaev, S., Pirnazarova, N., Obidova, I., Turgunov, K., Yakubov, U., Ashurov, J. M., Elmuradov, B. Z. & Mamadrakhimov, A. A. (2022). Acta Cryst. E78, 999–1002. [DOI] [PMC free article] [PubMed]
  15. Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. [DOI] [PMC free article] [PubMed]
  16. Rousselin, Y. & Clavel, A. (2024). IUCrData9, x240653. [DOI] [PMC free article] [PubMed]
  17. Sedavkina, V. A., Lizak, I. V., Kulikova, L. K. & Ostroumova, E. E. (1984). Zh. Khim. Farm1, 54–56.
  18. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  19. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  20. Westrip, S. P. (2010). J. Appl. Cryst.43, 920–925.
  21. Zein El Abedin, S., Borissenko, N. & Endres, F. (2004). Electrochem. Commun.6, 510–514.
  22. Zein El Abedin, S., Farag, H. K., Moustafa, E. M., Welz-Biermann, U. & Endres, F. (2005). Phys. Chem. Chem. Phys.7, 2333–2339. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989025006772/ev2018sup1.cif

e-81-00797-sup1.cif (703.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989025006772/ev2018Isup2.hkl

e-81-00797-Isup2.hkl (253.1KB, hkl)
e-81-00797-Isup3.cml (6.1KB, cml)

Supporting information file. DOI: 10.1107/S2056989025006772/ev2018Isup3.cml

CCDC reference: 2477070

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES