Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2025 Aug 7;81(Pt 9):811–815. doi: 10.1107/S2056989025006656

The crystal structures and Hirshfeld surface analysis of the 2-iodophenyl- and 4,5-difluoro-2-iodophenyl derivatives of benzenesulfonamide

Sundarasamy Madhan a, MohamedHanifa NizamMohideen a,*, Vinayagam Pavunkumar b, Arasambattu K MohanaKrishnan b
Editor: M Weilc
PMCID: PMC12412697  PMID: 40918561

N-(2-Iodo­phen­yl)benzene­sulfonamide, C12H10INO2, and N-(4,5-di­fluoro-2-iodo­phen­yl)benzene­sulfonamide, C12H8F2INO2S differ only in the replacement of two H atoms by F atoms, which changes the symmetry from P21/c to P1 and is accompanied by different mol­ecular conformations and packing features.

Keywords: crystal structure; 2-iodo­phen­yl; 4,5-di­fluoro; benzene­sulfonamide; π–π inter­actions; hydrogen bonding; Hirshfeld surface analysis

Abstract

Two new benzene­sulfonyl derivatives, N-(2-iodo­phen­yl)benzene­sulfonamide, C12H10INO2, (I), and N-(4,5-di­fluoro-2-iodo­phen­yl)benzene­sulfonamide, C12H8F2INO2S, (II) were synthesized and structurally characterized. In both mol­ecular structures, the conformation of the N—C bond in the –SO2—NH—C segment is gauche relative to the S=O bond. For (I), the crystal packing is dominated by N—H⋯O hydrogen-bonding inter­actions that link the mol­ecules into chains extending parallel to [010]. In the case of (II), the mol­ecules are linked by N—H⋯O(S) hydrogen bonds into dimers that are located on centers of inversion. These findings are consistent with the results of Hirshfeld surface analyses.

1. Chemical context

Sulfonamide-containing compounds, often referred to as sulfa drugs, form a significant class of pharmacologically active agents. These mol­ecules, which may incorporate one or more pharmacological scaffolds, demonstrate a broad spectrum of biological activities including anti­viral, anti­cancer, anti­bacterial, anti-carbonic anhydrase (CA), diuretic, COX-2 inhibitory, and protease inhibitory effects (Madhan et al., 2024a,b,c). The sulfonamide moiety is recognized as an important structural unit in medicinal chemistry and is present in many widely marketed drugs (Supuran, 2003; Elgemeie et al., 2019). Since their discovery, sulfonamides have been extensively used as anti­biotics (Zhao et al., 2016), particularly for treating infections like malaria, tuberculosis, or HIV, by targeting the di­hydro­pteroate synthase (DHPS) pathway (Dennis et al., 2018). Even after the advent of penicillin, sulfa drugs have retained their relevance in clinical settings due to their diverse therapeutic actions, including anti­tumor, anti­cancer, and anti­thyroid activities (Scozzafava et al., 2003). Various sulfonamide derivatives serve as chemotherapeutic agents, exhibiting anti­bacterial, anti­fungal, anti­tumor, and hypoglycemic properties (Chohan et al., 2010; El-Sayed et al., 2011 Seri et al., 2000). Benzene­sulfonamide derivatives are particularly known for their anti­tumor and anti­fungal activities. Crystallographic studies of these compounds reveal structural parameters consistent with other sulfonamide-based mol­ecules (Chakkaravarthi et al., 2007; Li & Yang, 2006). Continued inter­est in sulfonamides stems from their enduring role in treating bacterial infections, their chemical versatility, and their effectiveness despite the rise of newer anti­biotic classes. Modern synthetic approaches aim to produce sulfon­amide-functionalized heterocycles with enhanced anti­viral and anti­microbial profiles (Madhan et al., 2024a). Research into N-sulfonyl­ated I and F atom-substituted compounds is motivated by the observed enhancement of biological activity. Hence, the introduction of fluorine atoms into drugs is increasingly common due to the strong electron-withdrawing character and small atomic radius of the fluorine atom, which significantly influences the physiological, pharmacological and metabolic properties of a compound (Mueller et al., 2007; Purser et al., 2008). The availability of multiple aromatic groups in N-sulfonyl­ated 2-iodo­phenyl imposes also the possibility for versatile stacking patterns, which may be competitive to the conventional hydrogen-bonding inter­actions in the crystal packing.1.

In the context given above, we report herein the crystal structure determinations and Hirshfeld surface analyses of two new 2-iodo­phenyl benzene­sulfonamides: N-(2-iodo­phen­yl)benzene­sulfonamide, C12H10INO2, (I), and N-(4,5-di­fluoro-2-iodo­phen­yl)benzene­sulfonamide, C12H8F2INO2S, (II), which feature a complex inter­play of weak hydrogen bonding and π–π inter­actions.

2. Structural commentary

The mol­ecular structures of (I) and (II) are shown in Figs. 1 and 2, respectively. In both cases, the conformation of the N—C bond in the –SO2—NH—C segment is gauche relative to the S=O bond. The mol­ecule is twisted at the S—N bond with a torsion angle of C7—N1—S1—C6 = −69.0 (2)° for (I) and −61.1 (6)° for (II) compared to the values of −72.83 (15) and 61.9 (3)° in N-(phen­yl)-2-nitro­benzene­sulfonamide (Chaithanya et al., 2012a) and 4-nitro-N-phenyl­benzene­sulfonamide (Chaithanya et al., 2012b), respectively. The two benzene rings are tilted relative to each other by 44.1 (1)° for (I) and 73.1 (1)° for (II). The mol­ecular configuration of (II) is stabilized by a weak intra­molecular hydrogen bond C12—H12⋯O1 (Table 1) with one of the sulfone O-atoms as acceptor, which generates an S(6) ring motif. Other structural parameters (bond lengths and angles) in the mol­ecules of (I) and (II) agree well with those reported for related compounds (Madhan et al., 2022, 2023a,b, 2024a,b,c).

Figure 1.

Figure 1

The mol­ecular structure of compound (I), with atom labeling and displacement ellipsoids drawn at the 50% probability level.

Figure 2.

Figure 2

The mol­ecular structure of compound (II), with atom labeling and displacement ellipsoids drawn at the 50% probability level.

Table 1. Hydrogen-bond geometry (Å, °) for (I).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O2i 0.86 2.37 3.144 (3) 149
C3—H3⋯O1ii 0.93 2.57 3.352 (4) 142

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

3. Supra­molecular features

In the crystal structure of (I), inter­molecular N—H⋯O hydrogen-bonding inter­actions (Table 1) link the mol­ecules into C(4) chains (Etter et al., 1990) running parallel to [010] while C—H⋯O inter­actions inter­link these chains (Fig. 3). In addition, π–π inter­actions are present with a centroid-to-centroid distance Cg2⋯Cg2 (2 − x, 1 − y, 1 − z) = 3.747 (2) Å and a slippage of 1.035 Å (Cg2 is the centroid of phenyl ring C7–C1).

Figure 3.

Figure 3

Crystal packing of compound (I), showing the N—H⋯O and C—H⋯O inter­action that link the mol­ecules into chains.

In the crystal structure of (II), mol­ecules are linked by N—H⋯O(S) hydrogen-bonding inter­actions (Table 2, Fig. 4) into inversion-related dimers with an Inline graphic(8) graph-set motif (Etter et al., 1990). Like for (I), π–π inter­actions are present that consolidate the crystal packing, here with centroid-to-centroid distances Cg1⋯Cg1(1 − x, 2 − y, −z) = 3.621 (2) and a slippage of 0.998 Å and Cg2⋯Cg2(2 − x, 1 − y, 1 − z) = 3.797 (2) Å and a slippage of 1.617 Å (Cg1 and Cg2 are the centroids of the C1–C6 and C7–C12 rings, respectively).

Table 2. Hydrogen-bond geometry (Å, °) for (II).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O2i 0.86 2.58 3.169 (8) 126
C12—H12⋯O1 0.93 2.27 2.916 (11) 126

Symmetry code: (i) Inline graphic.

Figure 4.

Figure 4

Crystal packing of compound (II), showing the N—H⋯O(S) hydrogen-bonding inter­actions that lead to inversion-related dimers.

4. Hirshfeld surface analysis

In order to qu­antify the inter­molecular inter­actions in the crystals of (I) and (II), Hirshfeld surfaces and two-dimensional fingerprint plots were generated using CrystalExplorer (Spackman et al., 2021).

Plots of dnorm use the normalized functions di and de (Fig. 5), with white surfaces indicating contacts with distances equal to the sum of van der Waals (vdW) radii, while red and blue colors reflect contacts at the distances below and above sum of the corresponding vdW radii, respectively. Two-dimensional fingerprint plots showing the occurrence of all inter­molecular contacts (McKinnon et al., 2007) and are presented in Fig. 6. H⋯H in (I) and O⋯H/H⋯O contacts in (II) represent the largest contributions to the Hirshfeld surfaces (37.4 and 44.7%, respectively). Beyond these largest fractions, short contacts are O⋯H/H⋯O (21.7%) for (I) and O⋯C/C⋯O (17.2%) for (II) (Fig. 6c), C⋯H/H⋯C (16.5%) for (I) and O⋯O (11%) for (II) (Fig. 6d). The significant increase in the O⋯H/H⋯O contributions when moving from (I) to (II) reflects growing significance of C—H⋯O binding. This is in line with a larger number of the available inter­molecular O-atom acceptors in the latter case. Accordingly, a pair of spikes identifying O⋯H/H⋯O contacts on the plots in the case of (I) is more diffuse.

Figure 5.

Figure 5

The Hirshfeld surfaces of compounds (I) and (II) mapped over dnorm.

Figure 6.

Figure 6

Two-dimensional fingerprint plots for (I) and delineated into the principal contributions of H⋯H, O⋯H/H⋯O, C⋯H/H⋯C, I⋯H/H⋯I, I⋯C/C⋯I, C⋯C and I⋯O/O⋯I contacts and for (II) O⋯H/H⋯O, O⋯C/C⋯O, O⋯O, N⋯O/O⋯N, H⋯H, H⋯C/C⋯H, C⋯C, N⋯C/C⋯N and N⋯H/H⋯N. Other contributors account for less than 1.0% contacts to the surface areas.

In brief, the Hirshfeld surface analyses complement the main merit of the structure analyses, and together they suggest possibilities for controlling the supra­molecular behavior of benzene­sulfonamide as possible biomedical materials.

5. Database survey

A search of the Cambridge Structural Database (CSD, version 5.37; Groom et al., 2016) indicated 123 compounds incorporating the phenyl­sulfonamide moiety. The bond lengths and angles in (I) and (II) are very close to those observed in 2,4-dimethyl-N-(phen­yl)benzene­sulfonamide (Gowda et al., 2009a), 4-chloro-2-methyl-N-(phen­yl)benzene­sulfonamide (Gowda et al., 2009b), 4-methyl-N-(3,4-di­methyl­phen­yl)benzene­sulfonamide (Gowda et al., 2009c) and other aryl sulfonamides Perlovich et al., 2006; Tatsuta et al., 2009; Arora & Sundaralingam, 1971; Gelbrich et al., 2007). Of these, the most closely related examples are provided by structures of bromo­substituted 3-methyl-1-(phenyl­sulfon­yl)-1H-indole derivatives (Madhan et al., 2024b).

6. Synthesis and crystallization

(I): To a solution of 2-iodo­aniline (2 g, 9.17 mmol) in dry di­chloro­methane (DCM; 10 ml), benzene­sulfonyl chloride (1.42 ml, 11.01 mmol) and pyridine (1.11 ml, 13.76 mmol) were slowly added and stirred at room temperature for 8 h under nitro­gen atmosphere. After completion of the reaction (monitored by TLC), it was poured into ice water containing conc. HCl (1 ml), extracted with DCM (3 × 10 ml) then washed with water (2 × 20 ml) and dried (Na2SO4). Removal of the solvent in vacuo followed by trituration of the crude product with diethyl ether (5 ml) afforded (I) (2.43 g, 84%) as a colorless solid. M.p: 363–365 K. 1H-NMR (300 MHZ, CDCl3): δ 7.70 (d, J = 7.5 Hz, 2H), 7.61 (t, J = 7.5 Hz, 2H), 7.55–7.49 (m, 1 H), 7.41–7.36 (m, 2H), 7.28 (t, J = 7.5 Hz, 1H), 6.82–6.77 (m, 2H) ppm; 13C{1H}-NMR (75 MHz, CDCl3): δ 139.1, 138.8, 137.4, 133.3, 129.6, 127.4, 122.9, 92.5 ppm.

(II): To a solution of 4,5-di­fluoro2-iodo­aniline (2 g, 7.84 mmol) in dry DCM (10 ml), benzene­sulfonyl chloride (1.21 ml, 9.41 mmol) and pyridine (0.95 ml, 11.76 mmol) were slowly added and stirred at room temperature for 8 h under nitro­gen atmosphere. After completion of the reaction (monitored by TLC), it was poured into ice water containing conc. HCl (1 ml), extracted with DCM (3 × 10 ml) then washed with water (2 × 20 ml) and dried (Na2SO4). Removal of solvent in vacuo followed by trituration of the crude product with diethyl ether (5 mL) afforded benzene­sulfonamide (II) (2.56 g, 83%) as a colorless solid. M.p: 393–395 K. 1H-NMR (300 MHZ, CDCl3): δ 7.58 (d, J = 7.5 Hz, 2H), 7.45–7.39 (m, 2 H), 7.30–7.26 (m, 3 H)ppm; 13C{1H}-NMR (75 MHz, CDCl3): δ 150.7 (dd, 1JC–F = 249.4 Hz, 2JC–F = 12.7 Hz), 147.8 (dd, 1JC–F = 252 Hz, 2JC–F = 12.7 Hz), 138.4, 134.3 (dd, 1JC–F = 82 Hz, 2JC–F = 3 Hz), 133.7, 129.3, 127.4, 126.8 (d, JC–F = 19.5 Hz), 112.3 (d, JC–F = 21.7 Hz) ppm.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. All hydrogen atoms were positioned geometrically and refined as riding with N—H = 0.86 and C—H = 0.93 Å (aromatic CH) with Uiso(H) = 1.5Ueq(C) for methyl groups and 1.2Ueq(C) for other H atoms.

Table 3. Experimental details.

  (I) (II)
Crystal data
Chemical formula C12H10INO2S C12H8F2INO2S
M r 359.17 395.15
Crystal system, space group Monoclinic, P21/c Triclinic, PInline graphic
Temperature (K) 298 298
a, b, c (Å) 8.3648 (4), 9.8537 (4), 15.3923 (8) 8.2688 (5), 8.5178 (5), 10.4329 (7)
α, β, γ (°) 90, 90.955 (2), 90 81.291 (2), 80.503 (2), 68.383 (2)
V3) 1268.52 (10) 670.47 (7)
Z 4 2
Radiation type Mo Kα Cu Kα
μ (mm−1) 2.68 20.44
Crystal size (mm) 0.35 × 0.25 × 0.08 0.22 × 0.10 × 0.05
 
Data collection
Diffractometer Bruker D8 Venture Diffractometer Bruker D8 Venture Diffractometer
Absorption correction Multi-scan (SADABS; Krause et al., 2015) Multi-scan (SADABS; Krause et al., 2015)
Tmin, Tmax 0.672, 0.971 0.240, 0.521
No. of measured, independent and observed [I > 2σ(I)] reflections 29284, 2591, 2386 14553, 2476, 2367
R int 0.049 0.062
(sin θ/λ)max−1) 0.625 0.605
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.069, 1.09 0.072, 0.203, 1.14
No. of reflections 2591 2476
No. of parameters 155 173
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.54, −0.56 1.66, −0.95

Computer programs: APEX2 and SAINT (Bruker, 2016), SHELXT (Sheldrick, 2015a), SHELXL (Sheldrick, 2015b), ORTEP-3 for Windows and WinGX (Farrugia, 2012), Mercury (Macrae et al., 2020), publCIF (Westrip, 2010) and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I, II. DOI: 10.1107/S2056989025006656/wm5762sup1.cif

e-81-00811-sup1.cif (1.3MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989025006656/wm5762Isup2.hkl

e-81-00811-Isup2.hkl (207.5KB, hkl)

Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989025006656/wm5762IIsup3.hkl

e-81-00811-IIsup3.hkl (198.2KB, hkl)
e-81-00811-Isup4.cml (4.2KB, cml)

Supporting information file. DOI: 10.1107/S2056989025006656/wm5762Isup4.cml

e-81-00811-IIsup5.cml (4.5KB, cml)

Supporting information file. DOI: 10.1107/S2056989025006656/wm5762IIsup5.cml

CCDC references: 2475707, 2475706

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the SAIF, IIT, Madras, India, for the data collection.

supplementary crystallographic information

N-(2-Iodophenyl)benzenesulfonamide (I) . Crystal data

C12H10INO2S F(000) = 696
Mr = 359.17 Dx = 1.881 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 8.3648 (4) Å Cell parameters from 29284 reflections
b = 9.8537 (4) Å θ = 1.4–25.0°
c = 15.3923 (8) Å µ = 2.68 mm1
β = 90.955 (2)° T = 298 K
V = 1268.52 (10) Å3 Prism, colourless
Z = 4 0.35 × 0.25 × 0.08 mm

N-(2-Iodophenyl)benzenesulfonamide (I) . Data collection

Bruker D8 Venture Diffractometer 2386 reflections with I > 2σ(I)
Radiation source: micro focus sealed tube Rint = 0.049
ω and φ scans θmax = 26.4°, θmin = 3.4°
Absorption correction: multi-scan (SADABS; Krause et al., 2015) h = −10→10
Tmin = 0.672, Tmax = 0.971 k = −12→12
29284 measured reflections l = −19→19
2591 independent reflections

N-(2-Iodophenyl)benzenesulfonamide (I) . Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.027 w = 1/[σ2(Fo2) + (0.0319P)2 + 1.2298P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.069 (Δ/σ)max = 0.002
S = 1.09 Δρmax = 0.54 e Å3
2591 reflections Δρmin = −0.56 e Å3
155 parameters Extinction correction: SHELXL-2019/2 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraints Extinction coefficient: 0.0085 (7)

N-(2-Iodophenyl)benzenesulfonamide (I) . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

N-(2-Iodophenyl)benzenesulfonamide (I) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.5786 (3) 0.4285 (3) 0.74857 (19) 0.0393 (6)
H1 0.601455 0.365298 0.705621 0.047*
C2 0.4228 (4) 0.4717 (4) 0.7611 (2) 0.0488 (8)
H2 0.340905 0.439224 0.725207 0.059*
C3 0.3886 (4) 0.5624 (4) 0.8263 (3) 0.0539 (9)
H3 0.283767 0.590431 0.834558 0.065*
C4 0.5092 (4) 0.6113 (4) 0.8791 (3) 0.0576 (9)
H4 0.485310 0.671374 0.923622 0.069*
C5 0.6662 (4) 0.5720 (3) 0.8666 (2) 0.0451 (7)
H5 0.747984 0.606424 0.901827 0.054*
C6 0.6996 (3) 0.4810 (3) 0.80115 (17) 0.0310 (5)
C7 0.8849 (3) 0.4506 (3) 0.61007 (17) 0.0311 (5)
C8 0.7791 (3) 0.5277 (3) 0.55998 (18) 0.0342 (6)
C9 0.7163 (4) 0.4759 (4) 0.4824 (2) 0.0481 (8)
H9 0.646575 0.528401 0.448826 0.058*
C10 0.7567 (4) 0.3479 (4) 0.4552 (2) 0.0547 (9)
H10 0.713859 0.313449 0.403539 0.066*
C11 0.8612 (5) 0.2705 (4) 0.5049 (2) 0.0537 (9)
H11 0.888068 0.183527 0.486772 0.064*
C12 0.9263 (4) 0.3215 (3) 0.5814 (2) 0.0420 (7)
H12 0.998086 0.269303 0.613894 0.050*
N1 0.9533 (3) 0.4996 (2) 0.69018 (14) 0.0316 (5)
H1A 1.022622 0.564040 0.689506 0.038*
O1 0.9978 (2) 0.4978 (2) 0.84793 (13) 0.0405 (5)
O2 0.9031 (3) 0.28915 (19) 0.77277 (14) 0.0408 (5)
S1 0.90001 (7) 0.43340 (6) 0.78303 (4) 0.02932 (16)
I1 0.71045 (2) 0.72190 (2) 0.59939 (2) 0.04598 (11)

N-(2-Iodophenyl)benzenesulfonamide (I) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0361 (15) 0.0437 (16) 0.0381 (15) −0.0119 (12) 0.0004 (12) 0.0013 (13)
C2 0.0328 (15) 0.059 (2) 0.0542 (19) −0.0143 (14) −0.0079 (13) 0.0148 (16)
C3 0.0307 (15) 0.055 (2) 0.076 (2) 0.0046 (14) 0.0086 (15) 0.0110 (18)
C4 0.0435 (18) 0.057 (2) 0.072 (2) 0.0047 (16) 0.0105 (17) −0.0175 (19)
C5 0.0360 (15) 0.0491 (18) 0.0500 (17) −0.0010 (13) 0.0013 (13) −0.0111 (15)
C6 0.0283 (12) 0.0328 (13) 0.0320 (13) −0.0013 (10) 0.0003 (10) 0.0059 (11)
C7 0.0291 (12) 0.0344 (14) 0.0300 (13) −0.0044 (10) 0.0080 (10) −0.0005 (11)
C8 0.0319 (13) 0.0387 (15) 0.0320 (13) −0.0018 (11) 0.0063 (11) 0.0002 (11)
C9 0.0418 (16) 0.068 (2) 0.0343 (15) −0.0020 (15) −0.0015 (12) −0.0053 (15)
C10 0.053 (2) 0.069 (2) 0.0419 (17) −0.0123 (18) 0.0080 (15) −0.0218 (17)
C11 0.060 (2) 0.0462 (19) 0.056 (2) −0.0063 (15) 0.0219 (17) −0.0208 (16)
C12 0.0412 (16) 0.0392 (15) 0.0461 (16) 0.0024 (13) 0.0133 (13) −0.0029 (13)
N1 0.0285 (11) 0.0322 (11) 0.0340 (11) −0.0050 (9) 0.0015 (9) 0.0027 (9)
O1 0.0329 (10) 0.0483 (12) 0.0399 (11) −0.0002 (9) −0.0090 (8) 0.0000 (9)
O2 0.0485 (12) 0.0293 (10) 0.0445 (11) 0.0047 (8) −0.0005 (9) 0.0073 (8)
S1 0.0274 (3) 0.0295 (3) 0.0309 (3) 0.0011 (2) −0.0029 (2) 0.0029 (3)
I1 0.04805 (15) 0.03807 (15) 0.05150 (16) 0.00919 (8) −0.00858 (9) 0.00039 (8)

N-(2-Iodophenyl)benzenesulfonamide (I) . Geometric parameters (Å, º)

C1—C6 1.385 (4) C7—N1 1.434 (3)
C1—C2 1.388 (5) C8—C9 1.393 (4)
C1—H1 0.9300 C8—I1 2.091 (3)
C2—C3 1.377 (5) C9—C10 1.373 (5)
C2—H2 0.9300 C9—H9 0.9300
C3—C4 1.372 (5) C10—C11 1.382 (6)
C3—H3 0.9300 C10—H10 0.9300
C4—C5 1.386 (5) C11—C12 1.384 (5)
C4—H4 0.9300 C11—H11 0.9300
C5—C6 1.380 (4) C12—H12 0.9300
C5—H5 0.9300 N1—S1 1.640 (2)
C6—S1 1.768 (3) N1—H1A 0.8600
C7—C8 1.390 (4) O1—S1 1.429 (2)
C7—C12 1.392 (4) O2—S1 1.430 (2)
C6—C1—C2 118.8 (3) C9—C8—I1 118.9 (2)
C6—C1—H1 120.6 C10—C9—C8 120.5 (3)
C2—C1—H1 120.6 C10—C9—H9 119.8
C3—C2—C1 120.5 (3) C8—C9—H9 119.8
C3—C2—H2 119.7 C9—C10—C11 119.6 (3)
C1—C2—H2 119.7 C9—C10—H10 120.2
C4—C3—C2 120.0 (3) C11—C10—H10 120.2
C4—C3—H3 120.0 C10—C11—C12 120.5 (3)
C2—C3—H3 120.0 C10—C11—H11 119.8
C3—C4—C5 120.6 (3) C12—C11—H11 119.8
C3—C4—H4 119.7 C11—C12—C7 120.3 (3)
C5—C4—H4 119.7 C11—C12—H12 119.8
C6—C5—C4 119.1 (3) C7—C12—H12 119.8
C6—C5—H5 120.5 C7—N1—S1 120.34 (18)
C4—C5—H5 120.5 C7—N1—H1A 119.8
C5—C6—C1 121.0 (3) S1—N1—H1A 119.8
C5—C6—S1 119.4 (2) O1—S1—O2 120.50 (13)
C1—C6—S1 119.6 (2) O1—S1—N1 105.77 (12)
C8—C7—C12 118.9 (3) O2—S1—N1 107.07 (13)
C8—C7—N1 122.3 (2) O1—S1—C6 107.76 (13)
C12—C7—N1 118.8 (3) O2—S1—C6 107.45 (13)
C7—C8—C9 120.2 (3) N1—S1—C6 107.72 (12)
C7—C8—I1 121.0 (2)
C6—C1—C2—C3 −1.8 (5) C9—C10—C11—C12 −0.5 (5)
C1—C2—C3—C4 0.4 (5) C10—C11—C12—C7 1.2 (5)
C2—C3—C4—C5 1.0 (6) C8—C7—C12—C11 −0.8 (4)
C3—C4—C5—C6 −1.1 (6) N1—C7—C12—C11 179.3 (3)
C4—C5—C6—C1 −0.4 (5) C8—C7—N1—S1 110.1 (3)
C4—C5—C6—S1 178.5 (3) C12—C7—N1—S1 −70.0 (3)
C2—C1—C6—C5 1.8 (4) C7—N1—S1—O1 176.0 (2)
C2—C1—C6—S1 −177.1 (2) C7—N1—S1—O2 46.3 (2)
C12—C7—C8—C9 −0.1 (4) C7—N1—S1—C6 −69.0 (2)
N1—C7—C8—C9 179.7 (3) C5—C6—S1—O1 3.3 (3)
C12—C7—C8—I1 179.6 (2) C1—C6—S1—O1 −177.9 (2)
N1—C7—C8—I1 −0.6 (3) C5—C6—S1—O2 134.5 (2)
C7—C8—C9—C10 0.8 (5) C1—C6—S1—O2 −46.6 (3)
I1—C8—C9—C10 −178.9 (3) C5—C6—S1—N1 −110.4 (2)
C8—C9—C10—C11 −0.5 (5) C1—C6—S1—N1 68.4 (2)

N-(2-Iodophenyl)benzenesulfonamide (I) . Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1A···O2i 0.86 2.37 3.144 (3) 149
C3—H3···O1ii 0.93 2.57 3.352 (4) 142

Symmetry codes: (i) −x+2, y+1/2, −z+3/2; (ii) x−1, y, z.

N-(4,5-Difluoro-2-iodophenyl)benzenesulfonamide (II) . Crystal data

C12H8F2INO2S Z = 2
Mr = 395.15 F(000) = 380
Triclinic, P1 Dx = 1.957 Mg m3
a = 8.2688 (5) Å Cu Kα radiation, λ = 1.54178 Å
b = 8.5178 (5) Å Cell parameters from 14553 reflections
c = 10.4329 (7) Å θ = 1.4–25.0°
α = 81.291 (2)° µ = 20.44 mm1
β = 80.503 (2)° T = 298 K
γ = 68.383 (2)° Prism, colourless
V = 670.47 (7) Å3 0.22 × 0.10 × 0.05 mm

N-(4,5-Difluoro-2-iodophenyl)benzenesulfonamide (II) . Data collection

Bruker D8 Venture Diffractometer 2367 reflections with I > 2σ(I)
Radiation source: micro focus sealed tube Rint = 0.062
ω and φ scans θmax = 69.0°, θmin = 4.3°
Absorption correction: multi-scan (SADABS; Krause et al., 2015) h = −9→10
Tmin = 0.240, Tmax = 0.521 k = −10→10
14553 measured reflections l = −12→12
2476 independent reflections

N-(4,5-Difluoro-2-iodophenyl)benzenesulfonamide (II) . Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.072 w = 1/[σ2(Fo2) + (0.1461P)2 + 0.5316P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.203 (Δ/σ)max < 0.001
S = 1.14 Δρmax = 1.66 e Å3
2476 reflections Δρmin = −0.94 e Å3
173 parameters Extinction correction: SHELXL-2019/2 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraints Extinction coefficient: 0.017 (2)

N-(4,5-Difluoro-2-iodophenyl)benzenesulfonamide (II) . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

N-(4,5-Difluoro-2-iodophenyl)benzenesulfonamide (II) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.6043 (11) 0.6893 (10) 0.0209 (8) 0.0690 (17)
H1 0.692052 0.606880 −0.025462 0.083*
C2 0.4337 (12) 0.7289 (12) 0.0029 (10) 0.079 (2)
H2 0.405262 0.675110 −0.056593 0.095*
C3 0.3033 (11) 0.8488 (11) 0.0732 (10) 0.081 (2)
H3 0.186655 0.875898 0.061633 0.097*
C4 0.3467 (10) 0.9284 (11) 0.1607 (10) 0.080 (2)
H4 0.257809 1.008690 0.208075 0.096*
C5 0.5138 (10) 0.8932 (9) 0.1794 (8) 0.0674 (16)
H5 0.540488 0.948502 0.238810 0.081*
C6 0.6479 (9) 0.7712 (8) 0.1076 (6) 0.0582 (14)
C7 0.8376 (8) 0.5366 (8) 0.3596 (6) 0.0571 (14)
C8 0.7924 (10) 0.3964 (9) 0.4144 (7) 0.0614 (15)
C9 0.7196 (12) 0.3840 (12) 0.5445 (8) 0.078 (2)
H9 0.692000 0.289102 0.581056 0.093*
C10 0.6899 (13) 0.5163 (13) 0.6173 (8) 0.081 (2)
C11 0.7353 (14) 0.6529 (12) 0.5661 (9) 0.082 (2)
C12 0.8116 (11) 0.6642 (10) 0.4384 (8) 0.0700 (18)
H12 0.845408 0.756575 0.405198 0.084*
N1 0.9216 (7) 0.5461 (7) 0.2298 (6) 0.0597 (12)
H1A 1.004065 0.457002 0.202938 0.072*
O1 0.8802 (7) 0.8532 (7) 0.1911 (6) 0.0691 (12)
O2 0.9746 (7) 0.6771 (7) 0.0082 (5) 0.0717 (13)
S1 0.8673 (2) 0.7215 (2) 0.12842 (16) 0.0582 (5)
I1 0.83499 (6) 0.19041 (6) 0.30905 (4) 0.0749 (4)
F1 0.6177 (10) 0.5090 (9) 0.7433 (5) 0.116 (2)
F2 0.7077 (11) 0.7780 (9) 0.6410 (6) 0.112 (2)

N-(4,5-Difluoro-2-iodophenyl)benzenesulfonamide (II) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.085 (5) 0.061 (4) 0.068 (4) −0.032 (3) −0.006 (3) −0.014 (3)
C2 0.089 (5) 0.080 (5) 0.083 (5) −0.043 (4) −0.024 (4) −0.005 (4)
C3 0.064 (4) 0.076 (5) 0.102 (6) −0.028 (4) −0.017 (4) 0.007 (4)
C4 0.061 (4) 0.074 (5) 0.091 (6) −0.016 (3) 0.008 (4) −0.010 (4)
C5 0.074 (4) 0.057 (3) 0.068 (4) −0.020 (3) 0.004 (3) −0.014 (3)
C6 0.067 (3) 0.054 (3) 0.054 (3) −0.023 (3) −0.001 (3) −0.007 (3)
C7 0.056 (3) 0.059 (3) 0.053 (3) −0.012 (2) −0.007 (2) −0.015 (3)
C8 0.070 (4) 0.061 (4) 0.053 (3) −0.022 (3) −0.004 (3) −0.010 (3)
C9 0.092 (5) 0.084 (5) 0.059 (4) −0.038 (4) 0.002 (4) −0.006 (4)
C10 0.095 (5) 0.092 (6) 0.048 (4) −0.026 (4) 0.001 (3) −0.014 (4)
C11 0.100 (6) 0.078 (5) 0.060 (4) −0.015 (4) −0.011 (4) −0.023 (4)
C12 0.085 (5) 0.062 (4) 0.063 (4) −0.024 (3) −0.008 (3) −0.014 (3)
N1 0.065 (3) 0.056 (3) 0.055 (3) −0.018 (2) 0.000 (2) −0.014 (2)
O1 0.079 (3) 0.064 (3) 0.073 (3) −0.033 (2) −0.002 (2) −0.020 (2)
O2 0.078 (3) 0.076 (3) 0.059 (3) −0.030 (3) 0.014 (2) −0.018 (2)
S1 0.0632 (9) 0.0577 (9) 0.0560 (9) −0.0254 (7) 0.0028 (7) −0.0127 (7)
I1 0.0903 (5) 0.0698 (5) 0.0695 (5) −0.0344 (3) 0.0010 (3) −0.0166 (3)
F1 0.154 (6) 0.122 (5) 0.052 (3) −0.036 (4) 0.022 (3) −0.018 (3)
F2 0.156 (6) 0.104 (4) 0.077 (3) −0.038 (4) −0.001 (3) −0.045 (3)

N-(4,5-Difluoro-2-iodophenyl)benzenesulfonamide (II) . Geometric parameters (Å, º)

C1—C2 1.363 (12) C7—N1 1.422 (9)
C1—C6 1.386 (10) C8—C9 1.396 (10)
C1—H1 0.9300 C8—I1 2.100 (7)
C2—C3 1.377 (14) C9—C10 1.378 (13)
C2—H2 0.9300 C9—H9 0.9300
C3—C4 1.376 (14) C10—F1 1.353 (9)
C3—H3 0.9300 C10—C11 1.360 (15)
C4—C5 1.343 (12) C11—F2 1.346 (10)
C4—H4 0.9300 C11—C12 1.382 (12)
C5—C6 1.408 (10) C12—H12 0.9300
C5—H5 0.9300 N1—S1 1.655 (6)
C6—S1 1.748 (7) N1—H1A 0.8600
C7—C12 1.394 (10) O1—S1 1.425 (5)
C7—C8 1.394 (10) O2—S1 1.425 (5)
C2—C1—C6 120.4 (8) C9—C8—I1 116.3 (6)
C2—C1—H1 119.8 C10—C9—C8 118.2 (8)
C6—C1—H1 119.8 C10—C9—H9 120.9
C1—C2—C3 119.9 (8) C8—C9—H9 120.9
C1—C2—H2 120.1 F1—C10—C11 118.9 (9)
C3—C2—H2 120.1 F1—C10—C9 119.6 (9)
C4—C3—C2 119.7 (7) C11—C10—C9 121.4 (8)
C4—C3—H3 120.2 F2—C11—C10 119.7 (8)
C2—C3—H3 120.2 F2—C11—C12 119.5 (9)
C5—C4—C3 121.8 (8) C10—C11—C12 120.8 (8)
C5—C4—H4 119.1 C11—C12—C7 119.7 (8)
C3—C4—H4 119.1 C11—C12—H12 120.1
C4—C5—C6 118.9 (8) C7—C12—H12 120.1
C4—C5—H5 120.5 C7—N1—S1 122.7 (4)
C6—C5—H5 120.5 C7—N1—H1A 118.7
C1—C6—C5 119.3 (7) S1—N1—H1A 118.7
C1—C6—S1 120.1 (6) O1—S1—O2 118.7 (4)
C5—C6—S1 120.6 (5) O1—S1—N1 107.5 (3)
C12—C7—C8 118.5 (7) O2—S1—N1 105.5 (3)
C12—C7—N1 119.4 (7) O1—S1—C6 108.4 (3)
C8—C7—N1 121.8 (6) O2—S1—C6 109.5 (3)
C7—C8—C9 121.3 (7) N1—S1—C6 106.5 (3)
C7—C8—I1 122.4 (5)
C6—C1—C2—C3 −1.2 (12) F1—C10—C11—C12 179.1 (9)
C1—C2—C3—C4 0.3 (13) C9—C10—C11—C12 0.7 (15)
C2—C3—C4—C5 0.4 (14) F2—C11—C12—C7 −178.8 (8)
C3—C4—C5—C6 −0.2 (13) C10—C11—C12—C7 2.0 (13)
C2—C1—C6—C5 1.4 (11) C8—C7—C12—C11 −2.8 (11)
C2—C1—C6—S1 −179.2 (6) N1—C7—C12—C11 −177.8 (7)
C4—C5—C6—C1 −0.7 (11) C12—C7—N1—S1 −47.0 (8)
C4—C5—C6—S1 179.9 (6) C8—C7—N1—S1 138.2 (6)
C12—C7—C8—C9 1.2 (11) C7—N1—S1—O1 55.0 (6)
N1—C7—C8—C9 176.1 (7) C7—N1—S1—O2 −177.4 (5)
C12—C7—C8—I1 −177.3 (5) C7—N1—S1—C6 −61.1 (6)
N1—C7—C8—I1 −2.4 (9) C1—C6—S1—O1 163.4 (6)
C7—C8—C9—C10 1.3 (13) C5—C6—S1—O1 −17.1 (7)
I1—C8—C9—C10 179.9 (7) C1—C6—S1—O2 32.5 (7)
C8—C9—C10—F1 179.3 (8) C5—C6—S1—O2 −148.0 (6)
C8—C9—C10—C11 −2.3 (14) C1—C6—S1—N1 −81.1 (6)
F1—C10—C11—F2 −0.1 (15) C5—C6—S1—N1 98.4 (6)
C9—C10—C11—F2 −178.6 (9)

N-(4,5-Difluoro-2-iodophenyl)benzenesulfonamide (II) . Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1A···O2i 0.86 2.58 3.169 (8) 126
C12—H12···O1 0.93 2.27 2.916 (11) 126

Symmetry code: (i) −x+2, −y+1, −z.

Geometry of stacking interactions for I and II (Å, °).

Compound Group A Group B Shortest contacts CgA···CgB Plane···CgB ipa sa
I (C7–C12) (C7–C12)ii 3.747 (2) 3.747 (2) 3.602 (2) 0 16.0 (1)
II (C1–C6) (C1–C6)ˆiii 3.225 (2) 3.621 (2) 3.480 (2) 0 16.0 (2)
(C7–C12) (C7–C12)iv 3.499 (2) 3.797 (2) 3.436 (2) 0 25.2 (2)

a) Cg is a group centroid; Plane···CgB is the distance between mean plane of Group A and centroid of the interacting Group B; ipa is interplanar angle; sa is slippage angle, which is the angle of CgA···CgB axis to the Group A mean plane normal. [Symmetry codes for I: (ii) 2-X,-Y,-Z; for II: (iii) 1-X,2-Y,-Z; (iv) 2-X,1-Y,1-Z.]

References

  1. Arora, S. K. & Sundaralingam, M. (1971). Acta Cryst. B27, 1293–1298.
  2. Bruker (2016). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Chaithanya, U., Foro, S. & Gowda, B. T. (2012a). Acta Cryst. E68, o2627. [DOI] [PMC free article] [PubMed]
  4. Chaithanya, U., Foro, S. & Gowda, B. T. (2012b). Acta Cryst. E68, o2872. [DOI] [PMC free article] [PubMed]
  5. Chakkaravarthi, G., Dhayalan, V., Mohanakrishnan, A. K. & Manivannan, V. (2007). Acta Cryst. E63, o3698.
  6. Chohan, Z. H., Youssoufi, M. H., Jarrahpour, A. & Ben Hadda, T. (2010). Eur. J. Med. Chem.45, 1189–1199. [DOI] [PubMed]
  7. Dennis, M. L., Lee, M. D., Harjani, J. R., Ahmed, M., DeBono, A. J., Pitcher, N. P., Wang, Z., Chhabra, S., Barlow, N., Rahmani, R., Cleary, B., Dolezal, O., Hattarki, M., Aurelio, L., Shonberg, J., Graham, B., Peat, T. S., Baell, J. B. & Swarbrick, J. D. (2018). Chem. Eur. J.24, 1922–1930. [DOI] [PubMed]
  8. Elgemeie, G. H., Azzam, R. A. & Elsayed, R. E. (2019). Med. Chem. Res.28, 1099–1131.
  9. El-Sayed, N. S., El-Bendary, E. R., El-Ashry, S. M. & El-Kerdawy, M. M. (2011). Eur. J. Med. Chem.46, 3714–3720. [DOI] [PubMed]
  10. Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. [DOI] [PubMed]
  11. Farrugia, L. J. (2012). J. Appl. Cryst.45, 849–854.
  12. Gelbrich, T., Hursthouse, M. B. & Threlfall, T. L. (2007). Acta Cryst. B63, 621–632. [DOI] [PubMed]
  13. Gowda, B. T., Foro, S., Nirmala, P. G., Babitha, K. S. & Fuess, H. (2009a). Acta Cryst. E65, o476. [DOI] [PMC free article] [PubMed]
  14. Gowda, B. T., Foro, S., Nirmala, P. G., Babitha, K. S. & Fuess, H. (2009b). Acta Cryst. E65, o576. [DOI] [PMC free article] [PubMed]
  15. Gowda, B. T., Foro, S., Nirmala, P. G., Terao, H. & Fuess, H. (2009c). Acta Cryst. E65, o877. [DOI] [PMC free article] [PubMed]
  16. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  17. Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst.48, 3–10. [DOI] [PMC free article] [PubMed]
  18. Li, G.-C. & Yang, F.-L. (2006). Acta Cryst. E62, o4205–o4206.
  19. Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst.53, 226–235. [DOI] [PMC free article] [PubMed]
  20. Madhan, S., NizamMohideen, M., Harikrishnan, K. & MohanaKrishnan, A. K. (2024a). Acta Cryst. E80, 682–690. [DOI] [PMC free article] [PubMed]
  21. Madhan, S., NizamMohideen, M., Pavunkumar, V. & MohanaKrishnan, A. K. (2022). Acta Cryst. E78, 1198–1203.
  22. Madhan, S., NizamMohideen, M., Pavunkumar, V. & MohanaKrishnan, A. K. (2023a). Acta Cryst. E79, 521–525. [DOI] [PMC free article] [PubMed]
  23. Madhan, S., NizamMohideen, M., Pavunkumar, V. & MohanaKrishnan, A. K. (2023b). Acta Cryst. E79, 741–746. [DOI] [PMC free article] [PubMed]
  24. Madhan, S., NizamMohideen, M., Pavunkumar, V. & MohanaKrishnan, A. K. (2024b). Acta Cryst. E80, 845–851. [DOI] [PMC free article] [PubMed]
  25. Madhan, S., NizamMohideen, M., Pavunkumar, V. & MohanaKrishnan, A. K. (2024c). Acta Cryst. E80, 1110–1117. [DOI] [PMC free article] [PubMed]
  26. McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814. [DOI] [PubMed]
  27. Müller, K., Faeh, C. & Diederich, F. (2007). Science317, 1881–1886. [DOI] [PubMed]
  28. Perlovich, G. L., Tkachev, V. V., Schaper, K.-J. & Raevsky, O. A. (2006). Acta Cryst. E62, o780–o782.
  29. Purser, S., Moore, P. R., Swallow, S. & Gouverneur, V. (2008). Chem. Soc. Rev.37, 320–330. [DOI] [PubMed]
  30. Scozzafava, A., Owa, T., Mastrolorenzo, A. & Supuran, C. T. (2003). Curr. Med. Chem.10, 925–953. [DOI] [PubMed]
  31. Seri, K., Sanai, K., Kurashima, K., Imamura, Y. & Akita, H. (2000). Eur. J. Pharmacol.389, 253–256. [DOI] [PubMed]
  32. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  33. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  34. Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst.54, 1006–1011. [DOI] [PMC free article] [PubMed]
  35. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  36. Supuran, C. T. (2003). Expert Opin. Investig. Drugs12, 283–287. [DOI] [PubMed]
  37. Tatsuta, K., Yoshihara, S., Hattori, N., Yoshida, S. & Hosokawa, S. (2009). J. Antibiot.62, 469–470. [DOI] [PubMed]
  38. Westrip, S. P. (2010). J. Appl. Cryst.43, 920–925.
  39. Zhao, Y., Shadrick, W. R., Wallace, M. J., Wu, Y., Griffith, E. C., Qi, J., Yun, M., White, S. W. & Lee, R. E. (2016). Bioorg. Med. Chem. Lett.26, 3950–3954. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I, II. DOI: 10.1107/S2056989025006656/wm5762sup1.cif

e-81-00811-sup1.cif (1.3MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989025006656/wm5762Isup2.hkl

e-81-00811-Isup2.hkl (207.5KB, hkl)

Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989025006656/wm5762IIsup3.hkl

e-81-00811-IIsup3.hkl (198.2KB, hkl)
e-81-00811-Isup4.cml (4.2KB, cml)

Supporting information file. DOI: 10.1107/S2056989025006656/wm5762Isup4.cml

e-81-00811-IIsup5.cml (4.5KB, cml)

Supporting information file. DOI: 10.1107/S2056989025006656/wm5762IIsup5.cml

CCDC references: 2475707, 2475706

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES