Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2025 Aug 12;81(Pt 9):827–831. doi: 10.1107/S2056989025006991

Crystal structure of the 1:1 adduct of (E)-5-(2,3-di­hydro­benzo[d]thia­zol-2-yl­idene)-2,6-dioxo-4-phenyl-1,2,5,6-tetra­hydro­pyridine-3-carbo­nitrile and its piperidinium salt, piperidinium (Z)-5-(benzo[d]thia­zol-2-yl)-3-cyano-6-oxo-4-phenyl-1,6-di­hydro­pyridin-2-olate

Galal H Elgemeie a, Nadia H Metwally b, El-shimaa S M Abd Al-latif b, Peter G Jones c,*
Editor: C Schulzked
PMCID: PMC12412700  PMID: 40918581

The central pyridinic rings are approximately coplanar to the benzo­thia­zole moieties in both the neutral mol­ecule and the anion. Bond lengths and angles indicate considerable delocalization of the multiple bonding. The neutral mol­ecule is E-configured about the central C=C bond, but the anion is Z. Classical and ‘weak’ hydrogen bonds lead to a broad ribbon of residues.

Keywords: benzo­thia­zole, hydrogen bonds, crystal structure

Abstract

In the structure of the title compound, C5H12N+·C19H10N3O2S·C19H11N3O2S, the central pyridinic rings are approximately coplanar to the benzo­thia­zole moieties. The phenyl groups are appreciably angled to the central rings [inter­planar angles of 57.30 (3)° for the anion and 79.01 (4)° for the neutral mol­ecule]. Bond lengths and angles correspond to considerable delocalization of the π bonding, especially for the anion; all four C=O bond lengths are similar [1.2365 (13)–1.2591 (13) Å]. The two main residues display different configurations about the formally double C—C bonds between the benzo­thia­zole and pyridinic ring systems; the neutral mol­ecule is E, facilitating an intra­molecular N—H⋯O hydrogen bond, but the anion is Z, allowing a short intra­molecular S⋯O contact of 2.5794 (10) Å. Within the asymmetric unit, the piperidinium cation is hydrogen bonded to an oxygen atom of the anion; the anion and the neutral mol­ecule are connected by two N—H⋯O hydrogen bonds, forming a ring of graph-set R22(8). Asymmetric units are linked to form inversion-symmetric dimers by an Hcation⋯Oanion hydrogen bond. These are further linked by a C—H⋯O hydrogen bond to form a broad ribbon of residues parallel to the a axis.

1. Chemical context

A wide range of pharmacological preparations contain benzo­thia­zoles, which are adaptable heterocyclic biologically active compounds (Azzam et al., 2017; Elboshi et al., 2024). Because of their exceptional pharmacological potential, these mol­ecules are very significant in the field of medicinal chemistry (Keri et al., 2015). The hunt for novel therapeutic agents has benefited from the great degree of chemical variety displayed by benzo­thia­zole derivatives (Gill et al., 2015). Since several benzo­thia­zole-based compounds have been utilized extensively as clinical medications to treat a variety of disorders with great therapeutic benefit, research in benzo­thia­zole-based medicinal chemistry has quickly become an important area (Sharma et al., 2013). Medicinal chemists have invented numerous new synthetic methods targeting benzo­thia­zole-related derivatives (Azzam et al., 2022; Elgemeie et al., 2000). 2-Pyridyl­benzo­thia­zoles and 2-pyrim­id­in­yl­benzo­thia­zoles have emerged as a significant class of pharmacological agents in the creation of anti-tumour treatments in recent years (Azzam et al., 2020; Das et al., 2003); their synthetic accessibility and promising biological profile have aided in their development as possible chemotherapeutics. Many new synthetic techniques have been developed to introduce diversity and obtain this class of compounds in high yield (Seenaiah et al., 2014). We have recently reported the synthesis of a variety of anti­metabolites starting from activated and unsaturated nitriles (Abu-Zaied et al., 2024; Mohamed-Ezzat & Elgemeie, 2024). The reaction between 2-(benzo[d]thia­zol-2-yl)-3-phenyl­acryl­amide, 1, and ethyl cyano­acetate in refluxing ethanol containing a small amount of piperidine (initially intended as a catalyst) was examined as part of this program (Fig. 1). The product was shown to be neither of the expected condensed benzo­thia­zolo[3,2-a]pyridines (8 or 9) but rather the 1:1 adduct 10 of (E)-5-(benzo[d]thia­zol-2(3H)-yl­idene)-1,2,5,6-tetra­hydro-2,6-dioxo-4-phenyl­pyridine-3-carbo­nitrile with its piperidinium salt. We assume that the formation of 10 proceeds via addition of the active methyl­ene group of ethyl cyano­acetate to the double bond of 1, followed by cyclization via elimination of EtOH to give the inter­mediate 2. This is then oxidized under the reaction conditions, formally losing one mol­ecule of hydrogen to give the inter­mediate 4 or its tautomer 7. The latter clearly forms a pyridinium salt under the reaction conditions, and this in turn forms the 1:1 adduct 10 on crystallization. The chemical structure of 10 is consistent with elemental analysis and spectroscopic data and was determined unambiguously by single-crystal X-ray diffraction structural analysis.1.

Figure 1.

Figure 1

The reaction scheme for the synthesis of adduct 10.

2. Structural commentary

The structure of the adduct 10 is shown in Fig. 2; hydrogen bonds between residues are discussed in Supra­molecular features. The anion and the neutral mol­ecule of 7 were assigned the same atom numbering (which corresponds to standard numbering for the benzo­thia­zole moieties), but the latter has atom names with primes (′). Table 1 presents a selection of paired mol­ecular dimensions, with values in the left column for the anion and the corresponding values in the right column for the neutral mol­ecule.

Figure 2.

Figure 2

The formula unit of adduct 10 in the crystal. Ellipsoids represent 50% probability levels. Dashed lines indicate hydrogen bonds within the asymmetric unit.

Table 1. Selected geometric parameters (Å, °).

S1—C2 1.7742 (10) S1′—C2′ 1.7331 (11)
S1—C7A 1.7265 (13) S1′—C7A 1.7422 (12)
C2—N3 1.3058 (13) C2′—N3′ 1.3417 (14)
C2—C8 1.4610 (14) C2′—C8′ 1.4317 (15)
N3—C3A 1.3828 (13) N3′—C3A 1.3830 (16)
C3A—C7A 1.4033 (15) C3A′—C7A 1.3898 (19)
C9—O1 1.2446 (13) C9′—O1′ 1.2523 (13)
C10—O2 1.2591 (13) C10′—O2′ 1.2365 (13)
       
C7A—S1—C2 89.05 (5) C2′—S1′—C7A 91.12 (6)
N3—C2—C8 124.75 (9) N3′—C2′—C8′ 121.35 (10)
N3—C2—S1 114.49 (8) N3′—C2′—S1′ 110.55 (8)
C8—C2—S1 120.73 (7) C8′—C2′—S1′ 128.07 (8)
C2—N3—C3A 111.53 (9) C2′—N3′—C3A 116.07 (11)
N3—C3A—C7A 114.97 (10) N3′—C3A′—C7A 111.40 (10)
C3A—C7A—S1 109.95 (8) C3A′—C7A′—S1′ 110.84 (9)
C10—N1—C9 126.18 (9) C9′—N1′—C10′ 126.23 (9)
       
N3—C2—C8—C12 11.74 (15) N3′—C2′—C8′—C12′ 175.67 (9)
S1—C2—C8—C12 −170.52 (7) S1′—C2′—C8′—C12′ −6.52 (15)
N3—C2—C8—C9 −164.55 (9) N3′—C2′—C8′—C9′ −4.04 (14)
S1—C2—C8—C9 13.19 (12) S1′—C2′—C8′—C9′ 173.77 (7)

In the neutral mol­ecule, the heterocyclic nitro­gen atom N3′ is protonated. The two main residues display different configurations about the bonds C2—C8/C2′—C8′ between the approximately coplanar benzo­thia­zole and pyridinic ring systems, with an E configuration for the neutral mol­ecule, facilitating the intra­molecular hydrogen bond N3′—H⋯O1′, but a Z configuration for the anion, allowing a short intra­molecular S1⋯O1 contact of 2.5794 (10) Å. We have observed several such S⋯O contacts in related heterocyclic systems, e.g. 2.5992 (4) Å in 1-amino-3-(4-chloro­phen­yl)-2-cyano-3H-benzo[4,5]thia­zolo[3,2-a]pyridine-4-carboxamide (Metwally et al., 2025). Torsion angles about the C2—C8 bonds are given in Table 1. A least-squares fit of the pyridinic rings of both residues makes the difference clear (Fig. 3). The inter­planar angles to the central pyridinic ring are: for the anion, phenyl 57.30 (3)° and benzo­thia­zole 15.34 (5)° and for the neutral mol­ecule, phenyl 79.01 (4)° and benzo­thia­zole 6.00 (5)°.

Figure 3.

Figure 3

Least-squares fit of the neutral mol­ecule and anion of 10. The former is drawn purple and the latter green. Fitted atoms are labelled. The r.m.s. deviation is 0.07 Å.

The resonance formulae given in the scheme are clearly an oversimplification, since extensive delocalization of formal double bonds can be expected, especially for the anion. For example, the formal negative charge at O2 of the anion is not reflected in any major differences in the four C—O bond lengths (including those of the neutral mol­ecule), which lie in the range 1.2365 (13)–1.2591 (13) Å, corresponding to delocalized double-bond character [the ‘standard’ table of bond lengths (Allen et al., 1987) gives C—O bond lengths of 1.192 (5) Å for aldehydes, 1.210 (8) Å for ketones and 1.254 (10) Å for carboxyl­ates; a more recent (2023) anonymous inter­net summary gives 1.22 (2) Å for aldehydes and ketones, grouped together, and 1.25 (2) Å for carboxyl­ates (https://www.chem.uzh.ch/en/research/services/xray/bond_lenghts.html (sic)]. The formal double bonds C2′—C8′ and C2—N3 are significantly shorter than their formally single bond counterparts C2—C8 and C2′—N3′; the shorter C2—N3 bond is compensated for in the five-membered ring by the longer S1—C2 bond. Two of the angles in the five-membered rings differ appreciably; at N3/N3′ the angle is some 4.5° narrower for the anion, and the angle at C2/C2′ is correspondingly wider for the anion, preserving the angle sum of 540°. The exocyclic angles at C2/C2′ also differ notably; particularly striking is the very wide angle of 128.07 (8)° at C2′ of the neutral mol­ecule, which may perhaps be attributed to the close 1,5 approach of S1′ to the phenyl ring, with S1′⋯C21′ = 2.9190 (10) Å. The angle sums at C2 and C2′ are 359.97°.

3. Supra­molecular features

Hydrogen bonds are listed in Table 2. Within the asymmetric unit (Fig. 2), the piperidinium cation is hydrogen bonded via H031 to atom O1 of the anion; the anion and the neutral mol­ecule are connected by the hydrogen bonds H01⋯O2′ and H01′⋯O2, which together form a ring of the well-known graph set Inline graphic(8). Asymmetric units are then connected to form inversion-symmetric dimers by the hydrogen bond H032⋯O2(1 − x, 1 − y, 1 − z). These dimers are further linked by the ‘weak’ but very short hydrogen bond H22′⋯O1′(−x, 1 − y, 1 − z), connecting adjacent neutral mol­ecules, to form a broad ribbon of residues parallel to the a axis (Fig. 4). Three further C—H⋯O hydrogen bonds, within the dimeric units, are not shown in Fig. 4 but are given in Table 2.

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H01⋯O2′ 0.888 (18) 1.887 (18) 2.7703 (11) 172.9 (16)
N3′—H03′⋯O1′ 0.804 (19) 1.878 (19) 2.5399 (15) 139.0 (18)
N1′—H01′⋯O2 0.883 (17) 2.016 (18) 2.8903 (11) 169.8 (16)
N31—H031⋯O1 0.86 (2) 1.91 (2) 2.7327 (12) 158.7 (18)
N31—H032⋯O2i 0.87 (2) 1.88 (2) 2.7322 (13) 169.3 (19)
C36—H36B⋯O1′i 0.99 2.52 3.4487 (16) 157
C22′—H22′⋯O1′ii 0.95 2.34 3.2691 (13) 165
C26′—H26′⋯N3i 0.95 2.44 3.3437 (13) 159

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Figure 4.

Figure 4

The packing of compound 10 viewed parallel to the b axis. Hydrogen atoms not involved in hydrogen bonding are omitted for clarity. Dashed lines indicate classical (thick) or ‘weak’ (thin) hydrogen bonds. Atom labels indicate the asymmetric unit.

4. Database survey

The searches employed Version 2024.3.0 of the routine ConQuest (Bruno et al., 2002), as contained in the Cambridge Structural Database (Groom et al., 2016). A search for the 1,3-benzo­thia­zole framework with no substituents (other than H) at the benzo group, a hydrogen atom at N3 and a substituent at C2, two bonded atoms at sulfur and three at nitro­gen, gave 113 hits (organic ordered structures only). Restricting the search to a carbon atom substituent at C2 reduced the number of hits to 37. Restricting the number of bonded atoms at C2 to three (corresponding to an exocyclic double bond at C2) and rejecting metal-bearing and ionic species led to eight final hits. Curiously, two of the hits correspond to a duplicated structure, with two apparently different datasets but three common authors [(E)-4-(2,3-di­hydro-1,3-benzo­thia­zol-2-yl­idene)-3-methyl-1-phenyl-1H-pyrazol-5(4H)-one, refcodes NUQBIL and NUQBIL01, Chakibe et al. (2010) and Chakib et al. (2019)]. Furthermore, the structure of 6-[3-(2-benzo­thia­zol­yl)pyridin-2-yl­thio]-N-[3-(2-benzo­thia­zol­yl)pyridin-2-yl]aniline (QEKNIE; De Souza et al., 2006) has what seems to be an erroneously placed hydrogen at one of the two N3 atoms; since no structure factors were deposited, this cannot be checked. The other hits were 1,3-benzo­thia­zol-2(3H)-ylidenemalonaldehyde [AYOMAN, Ennajih et al. (2011), with an intra­molecular S⋯O contact of 2.763 Å]; 3-[1,3-benzo­thia­zol-2(3H)-yl­idene]-4-(4-bromo­phen­yl)-2,4-dioxo-N-phenyl­butan­amide [DOQFAU, Lystsova et al. (2024), S⋯O 2.672 Å]; 2-(3H-benzo­thia­zol-2-yl­idene)-2-cyano­thio­acetamide [GIYZIY, Basheer & Rappoport (2008)]; 2-(1,3-benzo­thia­zol-2(3H)-yl­idene)cyclo­hexane-1,3-dione [SOTHUH, Kumar & Ila (2019), S⋯O 2.646 Å]; and 2-[1,3-benzo­thia­zol-2(3H)-yl­idene]-5,7-di-t-butyl-4-nitro­cyclo­hepta-4,6-diene-1,3-dione [TADXIJ, Tkachev (2020), S⋯O 2.564 Å].

5. Synthesis and crystallization

A mixture of 2-(benzo[d]thia­zol-2-yl)-3-phenyl­acryl­amide (0.01 mol, 2.68 g), and ethyl 2-cyano­acetate (0.01 mole, 1.13 g) was dissolved in 70 mL of ethanol, and ca. 0.085 g (0.01 mmol) piperidine were added. The reaction mixture was stirred under reflux for 5 h. After cooling, the buff-coloured crystals thus obtained were filtered, washed with ethanol and dried at room temperature. Yield: 87%, m.p.: > 573 K. IR (KBr): ν (cm−1) = 3240 (NH), 2958 (CH, aromatic), 2220 (CN), 1674 (C=O); 1H NMR (400 MHz, DMSO-d6): δH 1.49 (d, 2H, J = 4.76 Hz, piperidine-H), 1.62 (d, 4H, J = 5.04 Hz, piperidine-H), 3.00 (t, 4H, J = 5.76 Hz, piperidine-H), 7.33–7.36 (m, 2H, Ar-H), 7.43–7.52 (m, 6H, Ar-H), 7.62–7.70 (m, 6H, Ar-H), 7.82 (d, 2H, J = 7.96 Hz, Ar-H), 8.03 (d, 2H, J = 8.16 Hz, Ar-H), 11.68 (br, 1H, NH) ppm; 13C NMR (100 MHz, DMSO-d6): δC = 22.09, 22.71, 44.29, 83.12, 102.20, 120.36, 121.13, 121.27, 123.26, 125.15, 128.24, 128.43, 135.06, 136.36, 137.47, 152.22, 158.79, 163.73, 163.88 ppm. Analysis: Calculated for C43H33N7O4S2 (775.88): C 66.56, H 4.29, N 12.64, S 8.26%. Found: C 66.76, H 4.36, N 12.44, S 8.40%.

6. Refinement

Details of data collection and structure refinement are summarized in Table 3. The hydrogen atoms of the NH groups were refined freely. Other hydrogen atoms were included using a riding model starting from calculated positions (C—Hmethyl­ene = 0.99, C—Harom = 0.95 Å). The U(H) values were fixed at 1.2 × Ueq of the parent carbon atoms.

Table 3. Experimental details.

Crystal data
Chemical formula C5H12N+·C19H10N3O2S·C19H11N3O2S
M r 775.88
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 11.3927 (2), 22.2956 (5), 14.6155 (3)
β (°) 91.4989 (18)
V3) 3711.15 (13)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.20
Crystal size (mm) 0.20 × 0.18 × 0.12
 
Data collection
Diffractometer XtaLAB Synergy
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2024)
Tmin, Tmax 0.833, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 308721, 17991, 13421
R int 0.058
θ values (°) θmax = 36.3, θmin = 2.0
(sin θ/λ)max−1) 0.833
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.130, 1.01
No. of reflections 17991
No. of parameters 525
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.54, −0.43

Computer programs: CrysAlis PRO (Rigaku OD, 2024), SHELXT (Sheldrick, 2015a), SHELXL2019/3 (Sheldrick, 2015b), XP (Bruker, 1998) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989025006991/yz2070sup1.cif

e-81-00827-sup1.cif (11.9MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989025006991/yz2070Isup3.hkl

e-81-00827-Isup3.hkl (1.4MB, hkl)

CCDC reference: 2478343

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge support by the Open Access Publication Funds of the Technical University of Braunschweig.

supplementary crystallographic information

Piperidinium (Z)-5-(benzo[d]thiazol-2-yl)-3-cyano-6-oxo-4-phenyl-1,6-dihydropyridin-2-olate–(E)-5-(2,3-dihydrobenzo[d]thiazol-2-ylidene)-2,6-dioxo-4-phenyl-1,2,5,6-tetrahydropyridine-3-carbonitrile (1/1) . Crystal data

C5H12N+·C19H10N3O2S·C19H11N3O2S·C5H12N F(000) = 1616
Mr = 775.88 Dx = 1.389 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 11.3927 (2) Å Cell parameters from 99329 reflections
b = 22.2956 (5) Å θ = 2.3–41.4°
c = 14.6155 (3) Å µ = 0.20 mm1
β = 91.4989 (18)° T = 100 K
V = 3711.15 (13) Å3 Block, pale orange
Z = 4 0.20 × 0.18 × 0.12 mm

Piperidinium (Z)-5-(benzo[d]thiazol-2-yl)-3-cyano-6-oxo-4-phenyl-1,6-dihydropyridin-2-olate–(E)-5-(2,3-dihydrobenzo[d]thiazol-2-ylidene)-2,6-dioxo-4-phenyl-1,2,5,6-tetrahydropyridine-3-carbonitrile (1/1) . Data collection

XtaLAB Synergy diffractometer 17991 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Mo) X-ray Source 13421 reflections with I > 2σ(I)
Mirror monochromator Rint = 0.058
Detector resolution: 10.0000 pixels mm-1 θmax = 36.3°, θmin = 2.0°
ω scans h = −18→18
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2024) k = −37→37
Tmin = 0.833, Tmax = 1.000 l = −24→24
308721 measured reflections

Piperidinium (Z)-5-(benzo[d]thiazol-2-yl)-3-cyano-6-oxo-4-phenyl-1,6-dihydropyridin-2-olate–(E)-5-(2,3-dihydrobenzo[d]thiazol-2-ylidene)-2,6-dioxo-4-phenyl-1,2,5,6-tetrahydropyridine-3-carbonitrile (1/1) . Refinement

Refinement on F2 Primary atom site location: dual
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.048 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.130 w = 1/[σ2(Fo2) + (0.0621P)2 + 1.247P] where P = (Fo2 + 2Fc2)/3
S = 1.01 (Δ/σ)max = 0.001
17991 reflections Δρmax = 0.54 e Å3
525 parameters Δρmin = −0.43 e Å3
0 restraints

Piperidinium (Z)-5-(benzo[d]thiazol-2-yl)-3-cyano-6-oxo-4-phenyl-1,6-dihydropyridin-2-olate–(E)-5-(2,3-dihydrobenzo[d]thiazol-2-ylidene)-2,6-dioxo-4-phenyl-1,2,5,6-tetrahydropyridine-3-carbonitrile (1/1) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.71164 (3) 0.33569 (2) 0.28714 (2) 0.02558 (6)
C2 0.70539 (9) 0.40954 (4) 0.24208 (7) 0.01945 (16)
N3 0.79003 (7) 0.42271 (4) 0.18698 (6) 0.02095 (15)
C3A 0.86519 (9) 0.37470 (5) 0.17600 (7) 0.02228 (17)
C4 0.96547 (10) 0.37498 (5) 0.12237 (8) 0.0280 (2)
H4 0.986670 0.409828 0.089244 0.034*
C5 1.03307 (11) 0.32333 (6) 0.11867 (10) 0.0342 (3)
H5 1.100731 0.322773 0.082038 0.041*
C6 1.00311 (12) 0.27198 (6) 0.16813 (11) 0.0372 (3)
H6 1.050738 0.237131 0.164531 0.045*
C7 0.90580 (12) 0.27128 (5) 0.22178 (10) 0.0342 (3)
H7 0.886269 0.236544 0.255821 0.041*
C7A 0.83611 (10) 0.32294 (5) 0.22512 (8) 0.02545 (19)
C8 0.61355 (8) 0.45117 (4) 0.26917 (6) 0.01869 (15)
C9 0.54643 (9) 0.43430 (5) 0.34723 (7) 0.02114 (17)
C10 0.44963 (9) 0.53224 (5) 0.34739 (7) 0.02072 (16)
C11 0.51217 (9) 0.54763 (4) 0.26706 (6) 0.01932 (16)
C12 0.59153 (8) 0.50714 (4) 0.22774 (6) 0.01743 (15)
C13 0.48682 (9) 0.60528 (5) 0.22925 (7) 0.02280 (18)
N1 0.46867 (8) 0.47575 (4) 0.38062 (6) 0.02260 (16)
H01 0.4263 (15) 0.4639 (8) 0.4275 (12) 0.037 (4)*
N2 0.46324 (9) 0.65278 (5) 0.20303 (8) 0.0316 (2)
O1 0.55326 (8) 0.38457 (4) 0.38568 (6) 0.02875 (16)
O2 0.37784 (7) 0.56595 (4) 0.38654 (5) 0.02544 (15)
C21 0.64521 (8) 0.52531 (4) 0.14002 (6) 0.01792 (15)
C22 0.70857 (9) 0.57856 (5) 0.13397 (7) 0.02216 (17)
H22 0.719625 0.603117 0.186611 0.027*
C23 0.75581 (10) 0.59597 (6) 0.05105 (8) 0.0283 (2)
H23 0.800085 0.631968 0.047631 0.034*
C24 0.73836 (10) 0.56089 (6) −0.02646 (8) 0.0307 (2)
H24 0.770665 0.572789 −0.082918 0.037*
C25 0.67349 (10) 0.50831 (6) −0.02130 (7) 0.0286 (2)
H25 0.660566 0.484542 −0.074554 0.034*
C26 0.62730 (9) 0.49028 (5) 0.06161 (7) 0.02262 (17)
H26 0.583547 0.454099 0.064855 0.027*
S1' −0.16760 (2) 0.54952 (2) 0.71007 (2) 0.02374 (6)
C2' −0.05035 (9) 0.57006 (5) 0.64368 (7) 0.02178 (17)
N3' −0.06080 (10) 0.62743 (4) 0.61697 (7) 0.02728 (18)
H03' −0.0104 (16) 0.6404 (8) 0.5850 (13) 0.041 (5)*
C3A' −0.15731 (12) 0.65807 (5) 0.64839 (8) 0.0296 (2)
C4' −0.18492 (14) 0.71833 (6) 0.63328 (10) 0.0385 (3)
H4' −0.137277 0.743219 0.596763 0.046*
C5' −0.28451 (15) 0.74025 (6) 0.67371 (10) 0.0435 (4)
H5' −0.305249 0.781198 0.665437 0.052*
C6' −0.35485 (14) 0.70369 (7) 0.72613 (10) 0.0425 (3)
H6' −0.423517 0.720059 0.751898 0.051*
C7' −0.32756 (12) 0.64384 (6) 0.74194 (9) 0.0350 (3)
H7' −0.375404 0.619173 0.778637 0.042*
C7A' −0.22680 (11) 0.62141 (5) 0.70160 (8) 0.0282 (2)
C8' 0.04555 (9) 0.53358 (4) 0.61541 (6) 0.01990 (16)
C9' 0.12669 (10) 0.55998 (5) 0.55169 (7) 0.02201 (17)
C10' 0.23707 (9) 0.46552 (5) 0.54682 (7) 0.02103 (17)
C11' 0.15670 (8) 0.44088 (4) 0.61192 (6) 0.01916 (16)
C12' 0.06532 (8) 0.47404 (4) 0.64627 (6) 0.01820 (15)
C13' 0.18219 (9) 0.38101 (5) 0.64011 (7) 0.02272 (18)
N1' 0.21530 (8) 0.52401 (4) 0.52096 (6) 0.02232 (16)
H01' 0.2676 (15) 0.5403 (8) 0.4849 (12) 0.034 (4)*
N2' 0.20876 (9) 0.33293 (5) 0.65995 (8) 0.0329 (2)
O1' 0.12078 (8) 0.61269 (4) 0.52232 (6) 0.02846 (16)
O2' 0.32082 (7) 0.43730 (4) 0.51621 (6) 0.02727 (16)
C21' −0.00711 (8) 0.44752 (4) 0.71946 (6) 0.01795 (15)
C22' −0.09844 (9) 0.40759 (5) 0.69898 (7) 0.02164 (17)
H22' −0.113584 0.395214 0.637603 0.026*
C23' −0.16728 (9) 0.38600 (5) 0.76928 (8) 0.02446 (19)
H23' −0.230441 0.359392 0.755511 0.029*
C24' −0.14416 (10) 0.40310 (5) 0.85906 (8) 0.0269 (2)
H24' −0.191538 0.388380 0.906654 0.032*
C25' −0.05148 (10) 0.44184 (5) 0.87938 (7) 0.0266 (2)
H25' −0.035010 0.453075 0.941086 0.032*
C26' 0.01712 (9) 0.46420 (5) 0.81015 (7) 0.02136 (17)
H26' 0.080264 0.490733 0.824330 0.026*
N31 0.58360 (10) 0.32155 (4) 0.54491 (7) 0.02745 (18)
H031 0.5776 (17) 0.3327 (9) 0.4883 (14) 0.047 (5)*
H032 0.5914 (17) 0.3556 (9) 0.5729 (13) 0.046 (5)*
C32 0.47111 (13) 0.29215 (7) 0.56629 (12) 0.0422 (3)
H32A 0.404921 0.318311 0.546616 0.051*
H32B 0.466803 0.286055 0.633215 0.051*
C33 0.46082 (18) 0.23233 (8) 0.51799 (13) 0.0558 (5)
H33A 0.452938 0.239223 0.451199 0.067*
H33B 0.388859 0.211715 0.537840 0.067*
C34 0.56620 (19) 0.19212 (6) 0.53749 (10) 0.0535 (5)
H34A 0.568542 0.180584 0.602922 0.064*
H34B 0.558939 0.155062 0.500446 0.064*
C35 0.67791 (18) 0.22428 (7) 0.51472 (11) 0.0488 (4)
H35A 0.679198 0.231704 0.447972 0.059*
H35B 0.746045 0.198617 0.531503 0.059*
C36 0.68824 (12) 0.28326 (6) 0.56510 (10) 0.0350 (3)
H36A 0.695068 0.275690 0.631769 0.042*
H36B 0.760063 0.304450 0.546279 0.042*

Piperidinium (Z)-5-(benzo[d]thiazol-2-yl)-3-cyano-6-oxo-4-phenyl-1,6-dihydropyridin-2-olate–(E)-5-(2,3-dihydrobenzo[d]thiazol-2-ylidene)-2,6-dioxo-4-phenyl-1,2,5,6-tetrahydropyridine-3-carbonitrile (1/1) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.03005 (13) 0.01907 (11) 0.02744 (12) −0.00193 (9) −0.00306 (9) 0.00599 (9)
C2 0.0217 (4) 0.0177 (4) 0.0187 (4) −0.0024 (3) −0.0035 (3) 0.0013 (3)
N3 0.0206 (3) 0.0190 (3) 0.0232 (4) 0.0008 (3) −0.0006 (3) 0.0011 (3)
C3A 0.0224 (4) 0.0197 (4) 0.0245 (4) 0.0018 (3) −0.0047 (3) −0.0004 (3)
C4 0.0247 (5) 0.0268 (5) 0.0326 (5) 0.0053 (4) 0.0006 (4) −0.0001 (4)
C5 0.0285 (5) 0.0320 (6) 0.0418 (7) 0.0092 (4) −0.0020 (5) −0.0045 (5)
C6 0.0340 (6) 0.0262 (5) 0.0510 (8) 0.0101 (4) −0.0082 (5) −0.0045 (5)
C7 0.0358 (6) 0.0201 (5) 0.0463 (7) 0.0039 (4) −0.0089 (5) 0.0031 (4)
C7A 0.0273 (5) 0.0190 (4) 0.0297 (5) 0.0006 (3) −0.0070 (4) 0.0014 (4)
C8 0.0205 (4) 0.0190 (4) 0.0166 (4) −0.0026 (3) 0.0005 (3) 0.0014 (3)
C9 0.0236 (4) 0.0219 (4) 0.0180 (4) −0.0047 (3) 0.0006 (3) 0.0026 (3)
C10 0.0223 (4) 0.0222 (4) 0.0179 (4) −0.0050 (3) 0.0043 (3) 0.0002 (3)
C11 0.0207 (4) 0.0195 (4) 0.0180 (4) −0.0015 (3) 0.0044 (3) 0.0014 (3)
C12 0.0178 (4) 0.0190 (4) 0.0155 (3) −0.0025 (3) 0.0008 (3) 0.0006 (3)
C13 0.0214 (4) 0.0244 (4) 0.0229 (4) 0.0000 (3) 0.0073 (3) 0.0019 (3)
N1 0.0266 (4) 0.0230 (4) 0.0185 (3) −0.0051 (3) 0.0061 (3) 0.0026 (3)
N2 0.0296 (5) 0.0274 (5) 0.0385 (5) 0.0048 (4) 0.0115 (4) 0.0076 (4)
O1 0.0355 (4) 0.0251 (4) 0.0257 (4) −0.0031 (3) 0.0024 (3) 0.0096 (3)
O2 0.0269 (4) 0.0252 (4) 0.0247 (3) −0.0039 (3) 0.0105 (3) −0.0011 (3)
C21 0.0174 (4) 0.0203 (4) 0.0162 (3) 0.0018 (3) 0.0015 (3) 0.0021 (3)
C22 0.0217 (4) 0.0241 (4) 0.0209 (4) −0.0019 (3) 0.0040 (3) 0.0029 (3)
C23 0.0254 (5) 0.0328 (5) 0.0272 (5) −0.0011 (4) 0.0075 (4) 0.0095 (4)
C24 0.0260 (5) 0.0460 (7) 0.0204 (4) 0.0054 (4) 0.0073 (4) 0.0084 (4)
C25 0.0257 (5) 0.0427 (6) 0.0175 (4) 0.0073 (4) 0.0019 (3) −0.0010 (4)
C26 0.0220 (4) 0.0271 (5) 0.0187 (4) 0.0026 (3) 0.0001 (3) −0.0014 (3)
S1' 0.02431 (11) 0.02488 (12) 0.02196 (11) 0.00288 (9) −0.00049 (8) −0.00297 (9)
C2' 0.0280 (4) 0.0203 (4) 0.0169 (4) −0.0007 (3) −0.0033 (3) −0.0015 (3)
N3' 0.0374 (5) 0.0212 (4) 0.0230 (4) 0.0016 (3) −0.0023 (4) −0.0004 (3)
C3A' 0.0399 (6) 0.0234 (5) 0.0250 (5) 0.0060 (4) −0.0090 (4) −0.0059 (4)
C4' 0.0550 (8) 0.0239 (5) 0.0358 (6) 0.0088 (5) −0.0131 (6) −0.0050 (4)
C5' 0.0582 (9) 0.0305 (6) 0.0407 (7) 0.0166 (6) −0.0191 (6) −0.0143 (5)
C6' 0.0459 (7) 0.0410 (7) 0.0398 (7) 0.0193 (6) −0.0138 (6) −0.0191 (6)
C7' 0.0337 (6) 0.0386 (6) 0.0322 (6) 0.0102 (5) −0.0082 (5) −0.0134 (5)
C7A' 0.0324 (5) 0.0274 (5) 0.0243 (5) 0.0071 (4) −0.0085 (4) −0.0083 (4)
C8' 0.0250 (4) 0.0191 (4) 0.0156 (4) −0.0030 (3) 0.0001 (3) 0.0008 (3)
C9' 0.0299 (5) 0.0207 (4) 0.0154 (4) −0.0070 (3) −0.0006 (3) 0.0007 (3)
C10' 0.0220 (4) 0.0239 (4) 0.0172 (4) −0.0058 (3) 0.0019 (3) 0.0025 (3)
C11' 0.0196 (4) 0.0198 (4) 0.0183 (4) −0.0037 (3) 0.0029 (3) 0.0024 (3)
C12' 0.0199 (4) 0.0197 (4) 0.0150 (3) −0.0041 (3) 0.0000 (3) 0.0010 (3)
C13' 0.0185 (4) 0.0252 (4) 0.0246 (4) −0.0029 (3) 0.0052 (3) 0.0030 (3)
N1' 0.0256 (4) 0.0237 (4) 0.0179 (3) −0.0072 (3) 0.0031 (3) 0.0036 (3)
N2' 0.0265 (4) 0.0287 (5) 0.0440 (6) 0.0001 (4) 0.0088 (4) 0.0094 (4)
O1' 0.0430 (5) 0.0201 (3) 0.0223 (3) −0.0061 (3) 0.0019 (3) 0.0035 (3)
O2' 0.0251 (4) 0.0307 (4) 0.0265 (4) −0.0019 (3) 0.0095 (3) 0.0058 (3)
C21' 0.0174 (4) 0.0191 (4) 0.0174 (4) −0.0010 (3) 0.0022 (3) 0.0012 (3)
C22' 0.0214 (4) 0.0218 (4) 0.0218 (4) −0.0036 (3) 0.0017 (3) −0.0006 (3)
C23' 0.0211 (4) 0.0223 (4) 0.0302 (5) −0.0034 (3) 0.0061 (3) 0.0006 (4)
C24' 0.0258 (5) 0.0285 (5) 0.0270 (5) −0.0008 (4) 0.0106 (4) 0.0039 (4)
C25' 0.0283 (5) 0.0333 (5) 0.0183 (4) −0.0012 (4) 0.0049 (3) 0.0007 (4)
C26' 0.0209 (4) 0.0258 (4) 0.0174 (4) −0.0020 (3) 0.0008 (3) −0.0002 (3)
N31 0.0410 (5) 0.0176 (4) 0.0238 (4) 0.0023 (3) 0.0030 (4) 0.0047 (3)
C32 0.0350 (6) 0.0430 (7) 0.0487 (8) −0.0018 (5) 0.0039 (6) 0.0075 (6)
C33 0.0655 (11) 0.0483 (9) 0.0524 (9) −0.0254 (8) −0.0220 (8) 0.0077 (7)
C34 0.1079 (15) 0.0193 (5) 0.0322 (6) −0.0086 (7) −0.0215 (8) 0.0013 (5)
C35 0.0772 (12) 0.0340 (7) 0.0352 (7) 0.0242 (7) −0.0022 (7) −0.0041 (5)
C36 0.0344 (6) 0.0295 (6) 0.0411 (7) 0.0039 (4) 0.0012 (5) −0.0005 (5)

Piperidinium (Z)-5-(benzo[d]thiazol-2-yl)-3-cyano-6-oxo-4-phenyl-1,6-dihydropyridin-2-olate–(E)-5-(2,3-dihydrobenzo[d]thiazol-2-ylidene)-2,6-dioxo-4-phenyl-1,2,5,6-tetrahydropyridine-3-carbonitrile (1/1) . Geometric parameters (Å, º)

S1—C2 1.7742 (10) C12'—C21' 1.4902 (13)
S1—C7A 1.7265 (13) C13'—N2' 1.1491 (15)
C2—N3 1.3058 (13) C21'—C22' 1.3958 (13)
C2—C8 1.4610 (14) C21'—C26' 1.3973 (14)
N3—C3A 1.3828 (13) C22'—C23' 1.3946 (14)
C3A—C4 1.4023 (16) C23'—C24' 1.3850 (16)
C3A—C7A 1.4033 (15) C24'—C25' 1.3903 (17)
C4—C5 1.3872 (16) C25'—C26' 1.3873 (14)
C5—C6 1.401 (2) N31—C32 1.4801 (18)
C6—C7 1.375 (2) N31—C36 1.4895 (17)
C7—C7A 1.4005 (16) C32—C33 1.512 (2)
C8—C12 1.4067 (13) C33—C34 1.519 (3)
C8—C9 1.4399 (13) C34—C35 1.506 (3)
C9—O1 1.2446 (13) C35—C36 1.510 (2)
C9—N1 1.3782 (14) C4—H4 0.9500
C10—O2 1.2591 (13) C5—H5 0.9500
C10—N1 1.3652 (14) C6—H6 0.9500
C10—C11 1.4310 (13) C7—H7 0.9500
C11—C12 1.4107 (13) N1—H01 0.888 (18)
C11—C13 1.4257 (14) C22—H22 0.9500
C12—C21 1.4910 (13) C23—H23 0.9500
C13—N2 1.1553 (14) C24—H24 0.9500
C21—C22 1.3934 (14) C25—H25 0.9500
C21—C26 1.3975 (14) C26—H26 0.9500
C22—C23 1.3940 (14) N3'—H03' 0.804 (19)
C23—C24 1.3866 (18) C4'—H4' 0.9500
C24—C25 1.3889 (19) C5'—H5' 0.9500
C25—C26 1.3930 (15) C6'—H6' 0.9500
S1'—C2' 1.7331 (11) C7'—H7' 0.9500
S1'—C7A' 1.7422 (12) N1'—H01' 0.883 (17)
C2'—N3' 1.3417 (14) C22'—H22' 0.9500
C2'—C8' 1.4317 (15) C23'—H23' 0.9500
N3'—C3A' 1.3830 (16) C24'—H24' 0.9500
C3A'—C7A' 1.3898 (19) C25'—H25' 0.9500
C3A'—C4' 1.3963 (17) C26'—H26' 0.9500
C4'—C5' 1.382 (2) N31—H031 0.86 (2)
C5'—C6' 1.388 (3) N31—H032 0.87 (2)
C6'—C7' 1.388 (2) C32—H32A 0.9900
C7'—C7A' 1.3967 (18) C32—H32B 0.9900
C8'—C12' 1.4182 (14) C33—H33A 0.9900
C8'—C9' 1.4536 (14) C33—H33B 0.9900
C9'—O1' 1.2523 (13) C34—H34A 0.9900
C9'—N1' 1.3739 (15) C34—H34B 0.9900
C10'—O2' 1.2365 (13) C35—H35A 0.9900
C10'—N1' 1.3784 (14) C35—H35B 0.9900
C10'—C11' 1.4461 (13) C36—H36A 0.9900
C11'—C12' 1.3821 (14) C36—H36B 0.9900
C11'—C13' 1.4245 (14)
C7A—S1—C2 89.05 (5) C25'—C26'—C21' 119.68 (10)
N3—C2—C8 124.75 (9) C32—N31—C36 113.41 (10)
N3—C2—S1 114.49 (8) N31—C32—C33 110.43 (14)
C8—C2—S1 120.73 (7) C32—C33—C34 112.44 (13)
C2—N3—C3A 111.53 (9) C35—C34—C33 110.23 (12)
N3—C3A—C4 125.27 (10) C34—C35—C36 111.26 (13)
N3—C3A—C7A 114.97 (10) N31—C36—C35 110.53 (12)
C4—C3A—C7A 119.75 (10) C5—C4—H4 120.7
C5—C4—C3A 118.64 (12) C3A—C4—H4 120.7
C4—C5—C6 121.01 (13) C4—C5—H5 119.5
C7—C6—C5 120.98 (11) C6—C5—H5 119.5
C6—C7—C7A 118.48 (12) C7—C6—H6 119.5
C7—C7A—C3A 121.13 (12) C5—C6—H6 119.5
C7—C7A—S1 128.89 (10) C6—C7—H7 120.8
C3A—C7A—S1 109.95 (8) C7A—C7—H7 120.8
C12—C8—C9 118.71 (9) C10—N1—H01 117.7 (11)
C12—C8—C2 124.59 (9) C9—N1—H01 116.2 (11)
C9—C8—C2 116.60 (9) C21—C22—H22 119.8
O1—C9—N1 118.08 (9) C23—C22—H22 119.8
O1—C9—C8 124.20 (10) C24—C23—H23 119.9
N1—C9—C8 117.71 (9) C22—C23—H23 119.9
O2—C10—N1 119.22 (9) C23—C24—H24 120.1
O2—C10—C11 124.96 (9) C25—C24—H24 120.1
N1—C10—C11 115.79 (9) C24—C25—H25 119.8
C12—C11—C13 123.00 (8) C26—C25—H25 119.8
C12—C11—C10 121.26 (9) C25—C26—H26 119.9
C13—C11—C10 115.73 (9) C21—C26—H26 119.9
C8—C12—C11 120.09 (8) C2'—N3'—H03' 117.0 (13)
C8—C12—C21 122.60 (8) C3A'—N3'—H03' 127.0 (13)
C11—C12—C21 117.25 (8) C5'—C4'—H4' 121.4
N2—C13—C11 176.22 (11) C3A'—C4'—H4' 121.4
C10—N1—C9 126.18 (9) C4'—C5'—H5' 119.3
C22—C21—C26 119.28 (9) C6'—C5'—H5' 119.3
C22—C21—C12 120.73 (9) C5'—C6'—H6' 119.1
C26—C21—C12 119.92 (9) C7'—C6'—H6' 119.1
C21—C22—C23 120.32 (10) C6'—C7'—H7' 121.4
C24—C23—C22 120.19 (11) C7A'—C7'—H7' 121.4
C23—C24—C25 119.78 (10) C9'—N1'—H01' 117.9 (11)
C24—C25—C26 120.31 (11) C10'—N1'—H01' 115.6 (11)
C25—C26—C21 120.10 (10) C23'—C22'—H22' 120.2
C2'—S1'—C7A' 91.12 (6) C21'—C22'—H22' 120.2
N3'—C2'—C8' 121.35 (10) C24'—C23'—H23' 119.8
N3'—C2'—S1' 110.55 (8) C22'—C23'—H23' 119.8
C8'—C2'—S1' 128.07 (8) C23'—C24'—H24' 120.1
C2'—N3'—C3A' 116.07 (11) C25'—C24'—H24' 120.1
N3'—C3A'—C7A' 111.40 (10) C26'—C25'—H25' 119.8
N3'—C3A'—C4' 126.91 (13) C24'—C25'—H25' 119.8
C7A'—C3A'—C4' 121.68 (13) C25'—C26'—H26' 120.2
C5'—C4'—C3A' 117.17 (15) C21'—C26'—H26' 120.2
C4'—C5'—C6' 121.38 (13) C32—N31—H031 106.4 (13)
C5'—C6'—C7' 121.77 (14) C36—N31—H031 113.3 (13)
C6'—C7'—C7A' 117.18 (15) C32—N31—H032 111.6 (13)
C3A'—C7A'—C7' 120.81 (12) C36—N31—H032 109.8 (13)
C3A'—C7A'—S1' 110.84 (9) H031—N31—H032 101.8 (17)
C7'—C7A'—S1' 128.34 (11) N31—C32—H32A 109.6
C12'—C8'—C2' 123.78 (9) C33—C32—H32A 109.6
C12'—C8'—C9' 118.97 (9) N31—C32—H32B 109.6
C2'—C8'—C9' 117.24 (9) C33—C32—H32B 109.6
O1'—C9'—N1' 117.97 (9) H32A—C32—H32B 108.1
O1'—C9'—C8' 124.76 (10) C32—C33—H33A 109.1
N1'—C9'—C8' 117.26 (9) C34—C33—H33A 109.1
O2'—C10'—N1' 121.15 (9) C32—C33—H33B 109.1
O2'—C10'—C11' 123.54 (10) C34—C33—H33B 109.1
N1'—C10'—C11' 115.31 (9) H33A—C33—H33B 107.8
C12'—C11'—C13' 123.09 (9) C35—C34—H34A 109.6
C12'—C11'—C10' 122.12 (9) C33—C34—H34A 109.6
C13'—C11'—C10' 114.74 (9) C35—C34—H34B 109.6
C11'—C12'—C8' 120.01 (9) C33—C34—H34B 109.6
C11'—C12'—C21' 119.01 (8) H34A—C34—H34B 108.1
C8'—C12'—C21' 120.90 (9) C34—C35—H35A 109.4
N2'—C13'—C11' 175.93 (11) C36—C35—H35A 109.4
C9'—N1'—C10' 126.23 (9) C34—C35—H35B 109.4
C22'—C21'—C26' 120.06 (9) C36—C35—H35B 109.4
C22'—C21'—C12' 121.52 (8) H35A—C35—H35B 108.0
C26'—C21'—C12' 118.42 (8) N31—C36—H36A 109.5
C23'—C22'—C21' 119.51 (9) C35—C36—H36A 109.5
C24'—C23'—C22' 120.42 (10) N31—C36—H36B 109.5
C23'—C24'—C25' 119.86 (10) C35—C36—H36B 109.5
C26'—C25'—C24' 120.45 (10) H36A—C36—H36B 108.1
C7A—S1—C2—N3 −0.77 (8) S1'—C2'—N3'—C3A' 1.61 (12)
C7A—S1—C2—C8 −178.73 (8) C2'—N3'—C3A'—C7A' −1.08 (14)
C8—C2—N3—C3A 178.49 (9) C2'—N3'—C3A'—C4' 177.27 (11)
S1—C2—N3—C3A 0.62 (11) N3'—C3A'—C4'—C5' −178.06 (12)
C2—N3—C3A—C4 −178.93 (10) C7A'—C3A'—C4'—C5' 0.13 (18)
C2—N3—C3A—C7A −0.08 (13) C3A'—C4'—C5'—C6' −0.79 (19)
N3—C3A—C4—C5 179.44 (11) C4'—C5'—C6'—C7' 1.2 (2)
C7A—C3A—C4—C5 0.64 (16) C5'—C6'—C7'—C7A' −0.95 (19)
C3A—C4—C5—C6 −0.72 (19) N3'—C3A'—C7A'—C7' 178.56 (10)
C4—C5—C6—C7 0.0 (2) C4'—C3A'—C7A'—C7' 0.11 (17)
C5—C6—C7—C7A 0.8 (2) N3'—C3A'—C7A'—S1' 0.03 (12)
C6—C7—C7A—C3A −0.85 (18) C4'—C3A'—C7A'—S1' −178.42 (9)
C6—C7—C7A—S1 −178.78 (10) C6'—C7'—C7A'—C3A' 0.29 (17)
N3—C3A—C7A—C7 −178.78 (10) C6'—C7'—C7A'—S1' 178.54 (9)
C4—C3A—C7A—C7 0.14 (16) C2'—S1'—C7A'—C3A' 0.71 (8)
N3—C3A—C7A—S1 −0.49 (12) C2'—S1'—C7A'—C7' −177.68 (11)
C4—C3A—C7A—S1 178.43 (8) N3'—C2'—C8'—C12' 175.67 (9)
C2—S1—C7A—C7 178.78 (11) S1'—C2'—C8'—C12' −6.52 (15)
C2—S1—C7A—C3A 0.67 (8) N3'—C2'—C8'—C9' −4.04 (14)
N3—C2—C8—C12 11.74 (15) S1'—C2'—C8'—C9' 173.77 (7)
S1—C2—C8—C12 −170.52 (7) C12'—C8'—C9'—O1' −177.30 (9)
N3—C2—C8—C9 −164.55 (9) C2'—C8'—C9'—O1' 2.43 (15)
S1—C2—C8—C9 13.19 (12) C12'—C8'—C9'—N1' 3.46 (13)
C12—C8—C9—O1 175.35 (10) C2'—C8'—C9'—N1' −176.80 (9)
C2—C8—C9—O1 −8.13 (15) O2'—C10'—C11'—C12' 178.63 (10)
C12—C8—C9—N1 −3.82 (13) N1'—C10'—C11'—C12' −0.63 (14)
C2—C8—C9—N1 172.70 (9) O2'—C10'—C11'—C13' 1.01 (15)
O2—C10—C11—C12 179.76 (10) N1'—C10'—C11'—C13' −178.25 (9)
N1—C10—C11—C12 −2.32 (14) C13'—C11'—C12'—C8' 179.62 (9)
O2—C10—C11—C13 −1.57 (15) C10'—C11'—C12'—C8' 2.20 (14)
N1—C10—C11—C13 176.35 (9) C13'—C11'—C12'—C21' 2.99 (14)
C9—C8—C12—C11 5.22 (13) C10'—C11'—C12'—C21' −174.43 (9)
C2—C8—C12—C11 −170.99 (9) C2'—C8'—C12'—C11' 176.69 (9)
C9—C8—C12—C21 −172.04 (9) C9'—C8'—C12'—C11' −3.60 (14)
C2—C8—C12—C21 11.75 (14) C2'—C8'—C12'—C21' −6.75 (14)
C13—C11—C12—C8 179.29 (9) C9'—C8'—C12'—C21' 172.96 (8)
C10—C11—C12—C8 −2.15 (14) O1'—C9'—N1'—C10' 178.65 (10)
C13—C11—C12—C21 −3.31 (14) C8'—C9'—N1'—C10' −2.06 (15)
C10—C11—C12—C21 175.25 (9) O2'—C10'—N1'—C9' −178.66 (10)
O2—C10—N1—C9 −178.05 (10) C11'—C10'—N1'—C9' 0.62 (14)
C11—C10—N1—C9 3.90 (15) C11'—C12'—C21'—C22' −81.65 (12)
O1—C9—N1—C10 179.90 (10) C8'—C12'—C21'—C22' 101.76 (11)
C8—C9—N1—C10 −0.87 (15) C11'—C12'—C21'—C26' 99.31 (11)
C8—C12—C21—C22 −125.55 (10) C8'—C12'—C21'—C26' −77.29 (12)
C11—C12—C21—C22 57.12 (12) C26'—C21'—C22'—C23' 1.92 (15)
C8—C12—C21—C26 57.61 (13) C12'—C21'—C22'—C23' −177.11 (9)
C11—C12—C21—C26 −119.72 (10) C21'—C22'—C23'—C24' −1.15 (16)
C26—C21—C22—C23 −1.44 (15) C22'—C23'—C24'—C25' −0.25 (17)
C12—C21—C22—C23 −178.30 (9) C23'—C24'—C25'—C26' 0.91 (18)
C21—C22—C23—C24 1.10 (17) C24'—C25'—C26'—C21' −0.13 (17)
C22—C23—C24—C25 0.06 (17) C22'—C21'—C26'—C25' −1.28 (15)
C23—C24—C25—C26 −0.87 (17) C12'—C21'—C26'—C25' 177.78 (10)
C24—C25—C26—C21 0.52 (16) C36—N31—C32—C33 −54.46 (16)
C22—C21—C26—C25 0.63 (15) N31—C32—C33—C34 53.39 (19)
C12—C21—C26—C25 177.52 (9) C32—C33—C34—C35 −54.42 (19)
C7A'—S1'—C2'—N3' −1.29 (8) C33—C34—C35—C36 55.39 (17)
C7A'—S1'—C2'—C8' −179.30 (9) C32—N31—C36—C35 56.13 (16)
C8'—C2'—N3'—C3A' 179.77 (9) C34—C35—C36—N31 −56.07 (16)

Piperidinium (Z)-5-(benzo[d]thiazol-2-yl)-3-cyano-6-oxo-4-phenyl-1,6-dihydropyridin-2-olate–(E)-5-(2,3-dihydrobenzo[d]thiazol-2-ylidene)-2,6-dioxo-4-phenyl-1,2,5,6-tetrahydropyridine-3-carbonitrile (1/1) . Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H01···O2′ 0.888 (18) 1.887 (18) 2.7703 (11) 172.9 (16)
N3′—H03′···O1′ 0.804 (19) 1.878 (19) 2.5399 (15) 139.0 (18)
N1′—H01′···O2 0.883 (17) 2.016 (18) 2.8903 (11) 169.8 (16)
N31—H031···O1 0.86 (2) 1.91 (2) 2.7327 (12) 158.7 (18)
N31—H032···O2i 0.87 (2) 1.88 (2) 2.7322 (13) 169.3 (19)
C36—H36B···O1′i 0.99 2.52 3.4487 (16) 157
C22′—H22′···O1′ii 0.95 2.34 3.2691 (13) 165
C26′—H26′···N3i 0.95 2.44 3.3437 (13) 159

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x, −y+1, −z+1.

References

  1. Abu-Zaied, M. A., Hebishy, A. M. S., Salama, H. T. & Elgemeie, G. H. (2024). Nucleosides Nucleotides Nucleic Acids43, 1529–1548. [DOI] [PubMed]
  2. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2 pp. S1–S19.
  3. Azzam, R. A., Elboshi, H. A. & Elgemeie, G. H. (2022). Antibiotics11, 1799. https://doi.org/10.3390/antibiotics11121799 [DOI] [PMC free article] [PubMed]
  4. Azzam, R. A., Elgemeie, G. H., Elsayed, R. E. & Jones, P. G. (2017). Acta Cryst. E73, 1041–1043. [DOI] [PMC free article] [PubMed]
  5. Azzam, R. A., Elsayed, R. E. & Elgemeie, G. H. (2020). ACS Omega5, 26182–26194. [DOI] [PMC free article] [PubMed]
  6. Basheer, A. & Rappoport, Z. (2008). J. Org. Chem.73, 1386–1396. [DOI] [PubMed]
  7. Bruker (1998). XP. Bruker Analytical X–Ray Instruments, Madison, Wisconsin, USA.
  8. Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397. [DOI] [PubMed]
  9. Chakib, I., El Bakri, Y., Lai, C.-H., Benbacer, L., Zerzouf, A., Essassi, E. M. & Mague, J. T. (2019). J. Mol. Struct. 1198 paper no. 126910. https://doi.org/10.1016/molstruc. 2019.126910
  10. Chakibe, I., Zerzouf, A., Essassi, E. M., Reichelt, M. & Reuter, H. (2010). Acta Cryst. E66, o1096. [DOI] [PMC free article] [PubMed]
  11. Das, J., Moquin, R. V., Lin, J., Liu, C., Doweyko, A. M., DeFex, H. F., Fang, Q., Pang, S., Pitt, S., Shen, D. R., Schieven, G. L., Barrish, J. C. & Wityak, J. (2003). Bioorg. Med. Chem. Lett.13, 2587–2590. [DOI] [PubMed]
  12. De Souza, M. V. N., Wardell, S. M. S. V., Wardell, J. L., Vasconcelos, T. A. & De Carvalho, E. M. (2006). J. Sulfur Chem.27, 193–202.
  13. Elboshi, H. A., Azzam, R. A., Elgemeie, G. H. & Jones, P. G. (2024). Acta Cryst. E80, 289–291. [DOI] [PMC free article] [PubMed]
  14. Elgemeie, G. H., Shams, Z., Elkholy, M. & Abbas, N. S. (2000). Heterocycl. Commun.6, 363–268.
  15. Ennajih, H., Bouhfid, R., Massip, S., Leger, J. M. & Essassi, E. M. (2011). Acta Cryst. E67, o2260. [DOI] [PMC free article] [PubMed]
  16. Gill, R. K., Rawal, R. K. & Bariwal, J. (2015). Arch. Pharm.348, 155–178. [DOI] [PubMed]
  17. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  18. Keri, R. S., Patil, M. R., Patil, S. A. & Budagumpi, S. (2015). Eur. J. Med. Chem.89, 207–251. [DOI] [PubMed]
  19. Kumar, Y. & Ila, H. (2019). Org. Lett.21, 7863–7867. [DOI] [PubMed]
  20. Lystsova, E. A., Novokshonova, A. D., Khramtsov, P. V., Novikov, A. S., Dmitriev, M. V., Maslivets, A. N. & Khramtsova, E. E. (2024). Molecules29, 2089. https://10.3390/molecules29092089 [DOI] [PMC free article] [PubMed]
  21. Metwally, N. H., Elgemeie, G. H., Abd Al-latif, E. S. M. & Jones, P. G. (2025). Acta Cryst. E81, 279–283. [DOI] [PMC free article] [PubMed]
  22. Mohamed-Ezzat, R. A. & Elgemeie, G. H. (2024). Nucleosides Nucleotides Nucleic Acids43, 1511–1528. [DOI] [PubMed]
  23. Rigaku OD (2024). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
  24. Seenaiah, D., Reddy, P. R., Reddy, G. M., Padmaja, A., Padmavathi, V. & Siva krishna, N. (2014). Eur. J. Med. Chem.77, 1–7. [DOI] [PubMed]
  25. Sharma, P. C., Sinhmar, A., Sharma, A., Rajak, H. & Pathak, D. P. J. (2013). J. Enzyme Inhib. Med. Chem.28, 240–266. [DOI] [PubMed]
  26. Sheldrick, G. M. (2015a). Acta Cryst. C71, 3–8.
  27. Sheldrick, G. M. (2015b). Acta Cryst. A71, 3–8.
  28. Tkachev, V. (2020). CSD Communication (CCDC-204335). CCDC, Cambridge, England. https::/doi.org/10.5517/ccdc.csd.cc26l9ns.
  29. Westrip, S. P. (2010). J. Appl. Cryst.43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989025006991/yz2070sup1.cif

e-81-00827-sup1.cif (11.9MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989025006991/yz2070Isup3.hkl

e-81-00827-Isup3.hkl (1.4MB, hkl)

CCDC reference: 2478343

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES