Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2025 Aug 5;81(Pt 9):788–791. doi: 10.1107/S205698902500670X

Crystal structure and Hirshfeld surface analysis of N,N′-(2,2-di­chloro-3-oxo-3-phenyl­propane-1,1-di­yl)diacetamide

Firudin I Guseinov a,b, Fatali E Huseynov c, Ksenia A Afanaseva a,b, Bogdan I Ugrak b, Lev M Glukhov b, Aida I Samigullina b, Mehmet Akkurt d, Gizachew Mulugeta Manahelohe e,*
Editor: S-L Zhengf
PMCID: PMC12412704  PMID: 40918576

In the crystal, mol­ecules are inter­connected by inter­molecular N—H⋯O, C—H⋯O, and C—H⋯Cl inter­actions establishing a three-dimensional network. Furthermore, the mol­ecules form layers parallel to the (002) plane via C—H⋯π inter­actions.

Keywords: crystal structure; α,α-dihalogen-β-oxoaldehydes; hydrogen bonds; C—H⋯π inter­actions; Hirshfeld surface analysis

Abstract

The conformation of the title mol­ecule, C13H14Cl2N2O3, is maintained by intra­molecular N—H⋯O, C—H⋯O, and C—H⋯Cl inter­actions, creating S(6), S(5), and S(6) motifs, respectively. In the crystal, inter­molecular N—H⋯O, C—H⋯O, and C—H⋯Cl inter­actions connect the mol­ecules, forming a three-dimensional network. Additionally, the mol­ecules are linked by C—H⋯π inter­actions, forming layers parallel to the (002) plane. The most important inter­actions, according to Hirshfeld two-dimensional fingerprint plots, are H⋯H (35.0%), O⋯H/H⋯O (21.2%), Cl⋯H/H⋯Cl (20.7%), and C⋯H/H⋯C (17.1%).

1. Chemical context

Bisamidals are an important class of organic compounds, since the amide fragment is a component of many biologically active substances and is widely used in pharmaceuticals, medicine and materials science (Manne et al., 2017; Zhang et al., 2013). Bisamidals are also convenient starting reagents for the synthesis of heterocyclic and organo­phospho­rus compounds with useful properties (Dmitriev et al., 2021; Makra et al., 2022). The catalytic and analytic properties of this class of compounds are strongly dependent on the attached groups to the amide moiety (Alieva et al., 2006; Aliyeva et al., 2024). Both the NH and C=O groups of bis­amidals can participate in various sorts of inter­molecular inter­actions, which improve the catalytic and biological activity of corresponding metal complexes (Kopylovich et al., 2012a,b; Mahmudov et al., 2015). We have previously shown that accessible highly electrophilic α,α-dihalogen-β-oxo­aldehydes readily condense with amides to form amidals (Guseinov et al., 1994,2024 and 2025). We used this property of aldehydes (1) to obtain bis­amidals (4). We found that bis­amidals can be synthesized with a yield of 92% by reacting aldehydes with aceto­nitrile in the presence of concentrated sulfuric acid at room temperature. The formation of product (4) occurs via amide (2) and amidals (3) according to the scheme shown in Fig. 1. The structure of the product (4) was proven by NMR spectroscopy and X-ray diffraction.1.

Figure 1.

Figure 1

Synthesis of N,N′-(2,2-di­chloro-3-oxo-3-phenyl­propane-1,1-di­yl)diacetamide.

2. Structural commentary

As shown in Fig. 2, the mol­ecular conformation is not planar. Intra­molecular N—H⋯O, C—H⋯O, and C–H⋯Cl inter­actions maintain the mol­ecular conformation, forming S(6), S(5), and S(6) motifs (Bernstein et al., 1995), respectively. The C9—C4—C3—O3, C9—C4—C3—C2, C4—C3—C2—Cl1, C4—C3—C2—Cl2, C3—C2—C1—N10, C3—C2—C1—N13, C2—C1—N10—C11 and C2—C1—N13—C14 torsion angles are 14.8 (3), −162.76 (19), 46.2 (2), −73.6 (2), 63.4 (2), −64.2 (2), 125.26 (18) and −119.66 (19)°, respectively. The mol­ecule exhibits no unusual bond lengths or inter-bond angles.

Figure 2.

Figure 2

The mol­ecular structure of the title compound with the atom labelling and displacement ellipsoids drawn at the 50% probability level.

3. Supra­molecular features and Hirshfeld surface analysis

In the crystal, the mol­ecules are linked into a three-dimensional network by inter­molecular N—H⋯O, C—H⋯O, and C—H⋯Cl inter­actions (Table 1, Fig. 3). In addition, the mol­ecules create layers parallel to the (002) plane through C—H⋯π inter­actions (Table 1, Fig. 4). No π–π inter­actions are observed in the structure.

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the C4–C9 aromatic ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N10—H10⋯O3 0.84 (3) 2.34 (3) 2.804 (2) 115 (2)
N10—H10⋯O14i 0.84 (3) 2.30 (3) 3.105 (2) 161 (3)
N13—H13⋯O3 0.83 (3) 2.60 (3) 2.982 (2) 110 (2)
N13—H13⋯O11i 0.83 (3) 2.09 (3) 2.912 (2) 169 (3)
C1—H1⋯O11 1.00 2.26 2.746 (2) 108
C1—H1⋯O14 1.00 2.28 2.763 (2) 108
C5—H5⋯Cl1 0.95 2.77 3.179 (2) 107
C5—H5⋯Cl2 0.95 2.81 3.4098 (19) 122
C6—H6⋯O11ii 0.95 2.53 3.239 (3) 131
C12—H12A⋯Cl1iii 0.98 2.73 3.278 (3) 116
C12—H12B⋯O14i 0.98 2.51 3.407 (3) 152
C15—H15B⋯O11i 0.98 2.60 3.460 (3) 147
C15—H15CCg1iv 0.98 2.89 3.703 (3) 141

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Figure 3.

Figure 3

A partial view of mol­ecular packing in the unit cell formed by inter­molecular N—H⋯O, C—H⋯O and C—H⋯Cl hydrogen bonds. Hydrogen atoms that are not involved in these inter­actions have been omitted for clarity.

Figure 4.

Figure 4

The view of the packing formed by C—H⋯π hydrogen bonds in the unit cell. H atoms that are not involved in these inter­actions have been removed for clarity.

The inter­molecular inter­actions (Tables 1 and 2) in the title compound were analysed using Hirshfeld surface calculations, employing CrystalExplorer 17.5 (Spackman et al., 2021). The Hirshfeld surface plotted over dnorm is shown in Fig. 5. The two-dimensional fingerprint plots (Fig. 6) show that the most significant contacts are H⋯H (35.0%), O⋯H/H⋯O (21.2%), Cl⋯H/H⋯Cl (20.7%), C⋯H/H⋯C (17.1%), Cl⋯Cl (2.1%), O⋯C/C⋯O (2.0%), O⋯N/N⋯O (0.9%), O⋯O (0.7%) and N⋯H/H⋯N (0.2%).

Table 2. Summary of short inter­atomic contacts (Å).

Contact Distance Symmetry operation
Cl1⋯H12A 2.73 x, −1 + y, z
O14⋯H9 2.66 −1 + x, y, z
H6⋯O11 2.53 1 − x, −Inline graphic + y, Inline graphic − z
H13⋯O11 2.09 Inline graphic + x, Inline graphic − y, 1 − z
C9⋯H6 3.08 2 − x, Inline graphic + y, Inline graphic − z
C6⋯H15B 2.99 Inline graphic − x, 1 − y, −Inline graphic + z
H7⋯C4 3.08 2 − x, −Inline graphic + y, Inline graphic − z

Figure 5.

Figure 5

A view of the three-dimensional Hirshfeld surface of the title compound mapped over dnorm.

Figure 6.

Figure 6

The full two-dimensional fingerprint plots for the title compound, showing (a) all inter­actions, and delineated into (b) H⋯H, (c) O⋯H/H⋯O, (d) Cl⋯H/H⋯Cl and (e) C⋯H/H⋯C inter­actions. The di and de values are the closest inter­nal and external distances (in Å) from given points on the Hirshfeld surface.

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 6.00, update of April 2025; Groom et al., 2016) for the 2,2-di­chloro-1-phenyl­propan-1-one unit generated 51 hits, the four most closely related to the title compound being those with refcodes QIRPUG (Clegg & Harrington, 2023), UHIQUZ (Essa et al., 2015), UHIROU (Essa et al., 2015) and YUXMIN (Mamedov et al., 1995).

QIRPUG and YUXMIN crystallize in the monoclinic space group P21/n, while UHIQUZ and UHIROU crystallize in the triclinic space group PInline graphic.

In the crystal of QIRPUG, the mol­ecules are linked into a three-dimensional network by O—H⋯O and C—H⋯O inter­actions. In addition, π–π and C—H⋯π inter­actions are also observed. In UHIQUZ, the mol­ecules are linked into layers parallel to the (010) plane by N—H⋯O and O—H⋯F inter­actions. The structure also contains π–π and C—H⋯π inter­actions. In UHIROU, the mol­ecules linked by C—H⋯O and O—H⋯Cl inter­actions form layers parallel to the (001) plane. The structure also exhibits π–π and C—H⋯π inter­actions. In YUXMIN, the mol­ecules connect through C—H⋯O inter­actions, forming a three-dimensional network and C—Cl⋯π inter­actions are also observed.

5. Synthesis and crystallization

To a solution of 217 mg (1 mmol) of 2,2-di­chloro-3-oxo-3-phenyl­propanal in 10 ml of aceto­nitrile was added sulfonic acid (2 mmol) at room temperature. The reaction mixture was then stirred for 1h. The solvent was removed in vacuo, the remaining white powder was recrystallized from chloro­form and N,N′-(2,2-di­chloro-3-oxo-3-phenyl­propane-1,1-di­yl)di­acetamide was isolated. Yield 292 mg (92%); m.p. 378–380 K. Analysis calculated (%) for C13H14Cl2N2O3: C 49.23, H 4.45, N 8.83, found C 45.18, H 4.41, N 8.82. ESI–MS: 316.0410. 1H NMR (300 MHz, DMSO-d6): 1.87 (6H, 2CH3), 6.95-8.10 (5H, Ar), 8.4 (2H, 2NH). 13C NMR (75 MHz, DMSO-d6): 22.24, 60.28, 89.93, 128.46, 129.83, 131.99, 133.77, 168.95, 187.35.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. The N-bound hydrogen atoms were located in a difference-Fourier map and refined freely [N10—H10 = 0.84 (3) and N13—H13 = 0.83 (3) Å]. The C-bound H atoms were positioned geometrically (C—H = 0.95 and 1.00 Å) and refined using a riding model with Uiso(H) = 1.2 or 1.5Ueq(C). The title compound was refined as an inversion twin with matrix [−1 0 0 0 − 1 0 0 0 − 1]; the resulting BASF value is 0.273 (14).

Table 3. Experimental details.

Crystal data
Chemical formula C13H14Cl2N2O3
M r 317.16
Crystal system, space group Orthorhombic, P212121
Temperature (K) 100
a, b, c (Å) 8.9115 (5), 8.9341 (7), 18.5838 (15)
V3) 1479.57 (19)
Z 4
Radiation type Cu Kα
μ (mm−1) 4.03
Crystal size (mm) 0.50 × 0.10 × 0.04
 
Data collection
Diffractometer XtaLAB Synergy, Dualflex, HyPix
Absorption correction Gaussian (CrysAlis PRO; Rigaku OD, 2024)
Tmin, Tmax 0.225, 0.945
No. of measured, independent and observed [I > 2σ(I)] reflections 17780, 3244, 3199
R int 0.033
(sin θ/λ)max−1) 0.640
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.063, 1.12
No. of reflections 3244
No. of parameters 192
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.29, −0.35
Absolute structure Refined as an inversion twin
Absolute structure parameter 0.273 (14)

Computer programs: CrysAlis PRO (Rigaku OD, 2024), SHELXT2014/5 (Sheldrick, 2015a), SHELXL2018/3 (Sheldrick, 2015b), ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2020).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S205698902500670X/oi2024sup1.cif

e-81-00788-sup1.cif (529.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S205698902500670X/oi2024Isup2.hkl

e-81-00788-Isup2.hkl (259.1KB, hkl)

CCDC reference: 2476058

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors’ contributions are as follows. Conceptualization, MA and GMM; synthesis and NMR analysis, FIG, KAA and RZN, X-ray analysis, AIS; writing (review and editing of the manuscript) SRH, MA and GMM; funding acquisitio,n BIU and LMG; supervision, MA and GMM.

supplementary crystallographic information

N-(2,2-Dichloro-1-acetamido-3-oxo-3-phenylpropyl)acetamide . Crystal data

C13H14Cl2N2O3 Dx = 1.424 Mg m3
Mr = 317.16 Cu Kα radiation, λ = 1.54184 Å
Orthorhombic, P212121 Cell parameters from 13822 reflections
a = 8.9115 (5) Å θ = 4.8–80.4°
b = 8.9341 (7) Å µ = 4.03 mm1
c = 18.5838 (15) Å T = 100 K
V = 1479.57 (19) Å3 Needle, colourless
Z = 4 0.50 × 0.10 × 0.04 mm
F(000) = 656

N-(2,2-Dichloro-1-acetamido-3-oxo-3-phenylpropyl)acetamide . Data collection

XtaLAB Synergy, Dualflex, HyPix diffractometer 3199 reflections with I > 2σ(I)
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source Rint = 0.033
ω scans θmax = 80.7°, θmin = 4.8°
Absorption correction: gaussian (CrysAlisPro; Rigaku OD, 2024) h = −11→7
Tmin = 0.225, Tmax = 0.945 k = −11→11
17780 measured reflections l = −23→23
3244 independent reflections

N-(2,2-Dichloro-1-acetamido-3-oxo-3-phenylpropyl)acetamide . Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.025 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.063 w = 1/[σ2(Fo2) + (0.025P)2 + 0.4827P] where P = (Fo2 + 2Fc2)/3
S = 1.12 (Δ/σ)max = 0.001
3244 reflections Δρmax = 0.29 e Å3
192 parameters Δρmin = −0.34 e Å3
0 restraints Absolute structure: Refined as an inversion twin
Primary atom site location: dual Absolute structure parameter: 0.273 (14)

N-(2,2-Dichloro-1-acetamido-3-oxo-3-phenylpropyl)acetamide . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refined as a two-component inversion twin

N-(2,2-Dichloro-1-acetamido-3-oxo-3-phenylpropyl)acetamide . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.4571 (2) 0.6512 (2) 0.42758 (11) 0.0153 (4)
H1 0.350530 0.632488 0.413306 0.018*
C2 0.5571 (2) 0.5762 (2) 0.36927 (11) 0.0164 (4)
C3 0.7281 (2) 0.5941 (2) 0.38261 (11) 0.0150 (4)
C4 0.8415 (2) 0.5028 (2) 0.34286 (11) 0.0166 (4)
C5 0.8137 (2) 0.4219 (2) 0.27994 (12) 0.0193 (4)
H5 0.717015 0.424755 0.258427 0.023*
C6 0.9271 (3) 0.3374 (3) 0.24883 (12) 0.0223 (4)
H6 0.908252 0.283161 0.205781 0.027*
C7 1.0687 (2) 0.3319 (3) 0.28069 (13) 0.0241 (4)
H7 1.145748 0.272622 0.259784 0.029*
C8 1.0970 (2) 0.4128 (3) 0.34284 (14) 0.0245 (5)
H8 1.193639 0.408985 0.364383 0.029*
C9 0.9849 (2) 0.4996 (2) 0.37380 (11) 0.0197 (4)
H9 1.005393 0.556575 0.415835 0.024*
C11 0.3557 (2) 0.9022 (2) 0.42317 (11) 0.0180 (4)
C12 0.3834 (3) 1.0663 (3) 0.43368 (15) 0.0276 (5)
H12A 0.359605 1.120063 0.389145 0.041*
H12B 0.489068 1.082549 0.446033 0.041*
H12C 0.319644 1.103611 0.472727 0.041*
C14 0.3606 (2) 0.5148 (2) 0.53082 (12) 0.0183 (4)
C15 0.3939 (3) 0.4528 (3) 0.60425 (13) 0.0263 (5)
H15A 0.321531 0.492994 0.638963 0.039*
H15B 0.495648 0.481658 0.618601 0.039*
H15C 0.386103 0.343439 0.603080 0.039*
Cl1 0.51039 (5) 0.38234 (5) 0.36798 (3) 0.02095 (12)
Cl2 0.51459 (6) 0.65975 (6) 0.28413 (3) 0.02384 (12)
N10 0.47663 (19) 0.81155 (19) 0.42972 (9) 0.0165 (3)
N13 0.47820 (19) 0.58088 (19) 0.49669 (9) 0.0155 (3)
O3 0.76361 (16) 0.68281 (18) 0.42875 (9) 0.0206 (3)
O11 0.22974 (16) 0.85474 (18) 0.40820 (9) 0.0205 (3)
O14 0.23568 (17) 0.50255 (19) 0.50325 (8) 0.0213 (3)
H10 0.559 (3) 0.845 (3) 0.4435 (15) 0.014 (6)*
H13 0.557 (3) 0.600 (3) 0.5189 (15) 0.016 (6)*

N-(2,2-Dichloro-1-acetamido-3-oxo-3-phenylpropyl)acetamide . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0103 (8) 0.0181 (9) 0.0175 (9) 0.0000 (7) 0.0001 (7) 0.0008 (7)
C2 0.0128 (8) 0.0198 (9) 0.0167 (9) −0.0005 (7) −0.0013 (7) 0.0016 (8)
C3 0.0133 (8) 0.0167 (8) 0.0150 (9) −0.0015 (7) −0.0004 (7) 0.0013 (7)
C4 0.0147 (9) 0.0173 (9) 0.0178 (9) −0.0003 (7) 0.0018 (7) 0.0013 (8)
C5 0.0175 (9) 0.0226 (10) 0.0179 (10) −0.0011 (8) −0.0010 (8) −0.0005 (8)
C6 0.0236 (10) 0.0247 (10) 0.0186 (10) 0.0007 (8) 0.0029 (8) −0.0031 (9)
C7 0.0191 (9) 0.0271 (11) 0.0260 (11) 0.0035 (8) 0.0055 (8) −0.0030 (10)
C8 0.0133 (9) 0.0304 (11) 0.0298 (12) 0.0023 (8) −0.0006 (8) −0.0017 (10)
C9 0.0138 (9) 0.0232 (9) 0.0221 (9) −0.0019 (8) 0.0005 (8) −0.0023 (8)
C11 0.0160 (9) 0.0213 (10) 0.0166 (9) 0.0022 (8) 0.0017 (7) 0.0028 (8)
C12 0.0234 (10) 0.0201 (10) 0.0393 (13) 0.0033 (8) −0.0041 (10) 0.0040 (9)
C14 0.0149 (9) 0.0187 (9) 0.0212 (10) −0.0006 (7) 0.0013 (8) −0.0029 (8)
C15 0.0228 (10) 0.0342 (12) 0.0219 (11) −0.0067 (9) −0.0016 (9) 0.0056 (9)
Cl1 0.0161 (2) 0.0188 (2) 0.0279 (2) −0.00432 (17) 0.00332 (18) −0.00562 (17)
Cl2 0.0204 (2) 0.0342 (3) 0.0169 (2) 0.0074 (2) −0.00126 (18) 0.00409 (19)
N10 0.0106 (7) 0.0173 (7) 0.0215 (8) −0.0015 (6) 0.0007 (6) 0.0006 (6)
N13 0.0102 (7) 0.0186 (8) 0.0177 (8) −0.0009 (6) −0.0009 (7) −0.0004 (6)
O3 0.0133 (6) 0.0228 (7) 0.0255 (8) −0.0005 (6) −0.0006 (6) −0.0061 (6)
O11 0.0126 (6) 0.0258 (7) 0.0231 (7) 0.0017 (6) −0.0009 (5) 0.0006 (6)
O14 0.0129 (7) 0.0267 (7) 0.0244 (8) −0.0045 (6) −0.0007 (6) 0.0006 (6)

N-(2,2-Dichloro-1-acetamido-3-oxo-3-phenylpropyl)acetamide . Geometric parameters (Å, º)

C1—N13 1.442 (3) C8—C9 1.389 (3)
C1—N10 1.444 (3) C8—H8 0.9500
C1—C2 1.555 (3) C9—H9 0.9500
C1—H1 1.0000 C11—O11 1.232 (3)
C2—C3 1.552 (3) C11—N10 1.354 (3)
C2—Cl1 1.781 (2) C11—C12 1.499 (3)
C2—Cl2 1.790 (2) C12—H12A 0.9800
C3—O3 1.210 (3) C12—H12B 0.9800
C3—C4 1.494 (3) C12—H12C 0.9800
C4—C5 1.397 (3) C14—O14 1.230 (3)
C4—C9 1.402 (3) C14—N13 1.360 (3)
C5—C6 1.388 (3) C14—C15 1.502 (3)
C5—H5 0.9500 C15—H15A 0.9800
C6—C7 1.395 (3) C15—H15B 0.9800
C6—H6 0.9500 C15—H15C 0.9800
C7—C8 1.386 (4) N10—H10 0.84 (3)
C7—H7 0.9500 N13—H13 0.83 (3)
N13—C1—N10 113.07 (17) C9—C8—H8 119.8
N13—C1—C2 111.00 (16) C8—C9—C4 119.8 (2)
N10—C1—C2 112.19 (16) C8—C9—H9 120.1
N13—C1—H1 106.7 C4—C9—H9 120.1
N10—C1—H1 106.7 O11—C11—N10 122.7 (2)
C2—C1—H1 106.7 O11—C11—C12 121.08 (19)
C3—C2—C1 114.02 (17) N10—C11—C12 116.25 (19)
C3—C2—Cl1 109.38 (14) C11—C12—H12A 109.5
C1—C2—Cl1 107.12 (13) C11—C12—H12B 109.5
C3—C2—Cl2 107.82 (14) H12A—C12—H12B 109.5
C1—C2—Cl2 108.36 (13) C11—C12—H12C 109.5
Cl1—C2—Cl2 110.13 (11) H12A—C12—H12C 109.5
O3—C3—C4 122.06 (18) H12B—C12—H12C 109.5
O3—C3—C2 115.96 (18) O14—C14—N13 122.8 (2)
C4—C3—C2 121.94 (18) O14—C14—C15 121.6 (2)
C5—C4—C9 119.65 (19) N13—C14—C15 115.55 (19)
C5—C4—C3 125.17 (18) C14—C15—H15A 109.5
C9—C4—C3 115.17 (18) C14—C15—H15B 109.5
C6—C5—C4 120.07 (19) H15A—C15—H15B 109.5
C6—C5—H5 120.0 C14—C15—H15C 109.5
C4—C5—H5 120.0 H15A—C15—H15C 109.5
C5—C6—C7 120.1 (2) H15B—C15—H15C 109.5
C5—C6—H6 120.0 C11—N10—C1 119.69 (17)
C7—C6—H6 120.0 C11—N10—H10 120.8 (19)
C8—C7—C6 120.0 (2) C1—N10—H10 118.2 (19)
C8—C7—H7 120.0 C14—N13—C1 120.26 (17)
C6—C7—H7 120.0 C14—N13—H13 120.6 (19)
C7—C8—C9 120.4 (2) C1—N13—H13 117 (2)
C7—C8—H8 119.8
N13—C1—C2—C3 −64.2 (2) C9—C4—C5—C6 0.8 (3)
N10—C1—C2—C3 63.4 (2) C3—C4—C5—C6 −178.1 (2)
N13—C1—C2—Cl1 56.97 (18) C4—C5—C6—C7 0.6 (3)
N10—C1—C2—Cl1 −175.45 (13) C5—C6—C7—C8 −1.1 (4)
N13—C1—C2—Cl2 175.76 (13) C6—C7—C8—C9 0.1 (4)
N10—C1—C2—Cl2 −56.66 (18) C7—C8—C9—C4 1.3 (4)
C1—C2—C3—O3 −11.6 (3) C5—C4—C9—C8 −1.7 (3)
Cl1—C2—C3—O3 −131.54 (17) C3—C4—C9—C8 177.2 (2)
Cl2—C2—C3—O3 108.71 (19) O11—C11—N10—C1 −7.4 (3)
C1—C2—C3—C4 166.04 (18) C12—C11—N10—C1 173.8 (2)
Cl1—C2—C3—C4 46.2 (2) N13—C1—N10—C11 −108.3 (2)
Cl2—C2—C3—C4 −73.6 (2) C2—C1—N10—C11 125.26 (18)
O3—C3—C4—C5 −166.3 (2) O14—C14—N13—C1 5.0 (3)
C2—C3—C4—C5 16.2 (3) C15—C14—N13—C1 −176.70 (19)
O3—C3—C4—C9 14.8 (3) N10—C1—N13—C14 113.2 (2)
C2—C3—C4—C9 −162.76 (19) C2—C1—N13—C14 −119.66 (19)

N-(2,2-Dichloro-1-acetamido-3-oxo-3-phenylpropyl)acetamide . Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N10—H10···O3 0.84 (3) 2.34 (3) 2.804 (2) 115 (2)
N10—H10···O14i 0.84 (3) 2.30 (3) 3.105 (2) 161 (3)
N13—H13···O3 0.83 (3) 2.60 (3) 2.982 (2) 110 (2)
N13—H13···O11i 0.83 (3) 2.09 (3) 2.912 (2) 169 (3)
C1—H1···O11 1.00 2.26 2.746 (2) 108
C1—H1···O14 1.00 2.28 2.763 (2) 108
C5—H5···Cl1 0.95 2.77 3.179 (2) 107
C5—H5···Cl2 0.95 2.81 3.4098 (19) 122
C6—H6···O11ii 0.95 2.53 3.239 (3) 131
C12—H12A···Cl1iii 0.98 2.73 3.278 (3) 116
C12—H12B···O14i 0.98 2.51 3.407 (3) 152
C15—H15B···O11i 0.98 2.60 3.460 (3) 147
C15—H15C···Cg1iv 0.98 2.89 3.703 (3) 141

Symmetry codes: (i) x+1/2, −y+3/2, −z+1; (ii) −x+1, y−1/2, −z+1/2; (iii) x, y+1, z; (iv) x−1/2, −y+1/2, −z+1.

Funding Statement

This publication has been supported by the Kosygin State University of Russia, N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences and Baku State University, Azerbaijan.

References

  1. Alieva, R. A., Veliev, V. N., Hamidov, S. Z. & Chyragov, F. M. (2006). J. Chem. Prob.3, 496–507.
  2. Aliyeva, V. A., Gurbanov, A. V., Huseynov, F. E., Hajiyeva, S. R., Conceição, N. R., Nunes, A. V. M., Pombeiro, A. J. L. & Mahmudov, K. T. (2024). Polyhedron255, 116955.
  3. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  4. Clegg, W. & Harrington, R. W. (2023). CSD Communication (refcode QIRPUG, CCDC 2283086). CCDC, Cambridge, England. https://10.5517/ccdc.csd.cc2gmqys
  5. Dmitriev, M. E., Golovash, S. R., Borodachev, A. V. & Ragulin, V. V. (2021). J. Org. Chem.86, 593–600. [DOI] [PubMed]
  6. Essa, A. H., Lerrick, R. I., Çiftçi, E., Harrington, R. W., Waddell, P. G., Clegg, W. & Hall, M. J. (2015). Org. Biomol. Chem.13, 5793–5803. [DOI] [PubMed]
  7. Farrugia, L. J. (2012). J. Appl. Cryst.45, 849–854.
  8. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  9. Guseinov, F. I., Hökelek, T., Afanaseva, K. A., Shuvalova, E. V., Glukhov, L. M., Samigullina, A. I. & Belay, A. N. (2025). Acta Cryst. E81, 538–542. [DOI] [PMC free article] [PubMed]
  10. Guseinov, F. I. & Moskva, V. V. (1994). Zh. Org. Khim.30, 360–365.
  11. Guseinov, F. I., Ovsyannikov, V. O., Shuvalova, E. V., Kustov, L. M., Kobrakov, K. I., Samigullina, A. I. & Mahmudov, K. T. (2024). New J. Chem.48, 12869–12872.
  12. Kopylovich, M. N., Gajewska, M. J., Mahmudov, K. T., Kirillova, M. V., Figiel, P. J., Guedes da Silva, M. F. C., Gil-Hernández, B., Sanchiz, J. & Pombeiro, A. J. L. (2012a). New J. Chem.36, 1646–1654.
  13. Kopylovich, M. N., Mac Leod, T. C. O., Haukka, M., Amanullayeva, G. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2012b). J. Inorg. Biochem.115, 72–77. [DOI] [PubMed]
  14. Mahmudov, K. T., Guedes da Silva, M. F. C., Sutradhar, M., Kopylovich, M. N., Huseynov, F. E., Shamilov, N. T., Voronina, A. A., Buslaeva, T. M. & Pombeiro, A. J. L. (2015). Dalton Trans.44, 5602–5610. [DOI] [PubMed]
  15. Makra, Z., Madácsi, R., Martinek, T. A., Bényei, A., Puskás, L. G., Gyuris, M. & Kanizsai, I. (2022). Adv. Synth. Catal.364, 1134–1143.
  16. Mamedov, V. A., Berdnikov, E. A., Litvinov, I. A., Kuz’mina, L. G., Sibgatullina, F. G. & Ismaev, I. E. (1995). Dokl. Akad. Nauk SSSR341, 641–645.
  17. Manne, S. R., Thalluri, K., Giri, R. S., Chandra, J. & Mandal, B. (2017). Adv. Synth. Catal.359, 168–176.
  18. Rigaku OD (2024). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
  19. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  20. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  21. Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst.54, 1006–1011. [DOI] [PMC free article] [PubMed]
  22. Spek, A. L. (2020). Acta Cryst. E76, 1–11. [DOI] [PMC free article] [PubMed]
  23. Zhang, Y., Zhong, Z., Han, Y., Han, R. & Cheng, X. (2013). Tetrahedron69, 11080–11083.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S205698902500670X/oi2024sup1.cif

e-81-00788-sup1.cif (529.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S205698902500670X/oi2024Isup2.hkl

e-81-00788-Isup2.hkl (259.1KB, hkl)

CCDC reference: 2476058

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES