Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2025 Aug 7;81(Pt 9):806–810. doi: 10.1107/S2056989025006929

Crystal structure and Hirshfeld surface analysis of a supra­molecular aggregate of 4-formyl-N,N-di­methyl­anilinium bromide with tetra­bromomethane

Atash V Gurbanov a, Tuncer Hökelek b, Gunay Z Mammadova c, Khudayar I Hasanov d, Tahir A Javadzade e, Alebel N Belay f,*
Editor: S Parking
PMCID: PMC12412705  PMID: 40918570

In the title compound, bromide ions link 4-formyl-N,N-di­methyl­benzenaminium mol­ecules through inter­molecular C—H⋯Br and N—H⋯Br hydrogen bonds, while inter­molecular C—H⋯O hydrogen bonds link the cations, enclosing R22(18) ring motifs, into a di-periodic network structure. The tetra­bromo­methane mol­ecules fill the spaces between the layers.

Keywords: crystal structure, non-covalent inter­actions, hydrogen bond, benzenaminium

Abstract

The title compound, C9H12NO+·Br·CBr4, consists of one 4-formyl-N,N-di­methyl­benzenaminium bromide and a tetra­bromo­methane mol­ecule. In the crystal, the bromide ions link 4-formyl-N,N-di­methyl­benzenaminium moieties through inter­molecular C—H⋯Br and N—H⋯Br hydrogen bonds, while inter­molecular C—H⋯O hydrogen bonds link 4-formyl-N,N-di­methyl­benzenaminium cations, enclosing R22(18) ring motifs, into a di-periodic network structure. The tetra­bromo­methane mol­ecules fill the spaces between the layers. Neither π–π nor C—H⋯π(ring) inter­actions are observed. A Hirshfeld surface analysis of the crystal structure indicates that the most abundant contacts contributing to the crystal packing are from H⋯Br/Br⋯H (56.0%), Br⋯Br (12.1%), H⋯O/O⋯H (9.7%) and H⋯H (9.5%) inter­actions.

1. Chemical context

Aldehydes are versatile compounds for the synthesis of organic acids, dyes, drugs, perfumes, detergents, soaps, etc. In the synthesis of those compounds the aldehydes undergo many different nucleophilic addition reactions. In order to increase the electrophilicity of the carbon atom at the C=O group of the aldehyde mol­ecule, metal complexes or organocatalysts are commonly used (Ma et al., 2017, 2021; Mahmudov & Pombeiro, 2023). Following crystal engineering principles (Gurbanov et al., 2020; Mahmoudi et al., 2018; Velásquez et al., 2019), weak inter­actions, halogen bonds, and other inter­actions, have been used in the activation of aldehydes towards the synthesis of various classes of organic compounds (Gurbanov et al., 2022; Sutar & Huber, 2019). We found that weak inter­actions can be formed with substituents at the aldehyde mol­ecules instead of with the oxygen atom of the C=O group.1.

Herein, we provide details of the synthesis and an examination of the mol­ecular and crystal structures, together with a Hirshfeld surface analysis, of the title compound (I).

2. Structural commentary

The title compound, (I), consists of one 4-formyl-N,N-di­methyl­benzenaminium bromide unit and a tetra­bromo­methane solvent mol­ecule (Fig. 1). The C—C and C—C—C bond lengths and angles of ring A are in the ranges 1.366 (7) to 1.3998 (10) Å and 118.6 (4) to 121.8 (4)° with average values of 1.388 (8) Å and 120.0 (4)°, respectively. These values are reported as 1.375 Å and 119.9° in p-di­methyl­amino-benzaldehyde hydro­bromide, (II) (Dattagupta & Saha, 1973). Both of the N—C bonds between the methyl carbon and amino nitro­gen atoms are 1.497 (4) Å, and the corresponding ones in compound (II) are 1.51 (4) and 1.43 (4) Å. The C=O bond length in the aldehyde group is 1.198 (7) Å, and its corresponding value is 1.18 (4) Å in compound (II). The dihedral angle between ring A and the plane of atoms (O1/C4/C8) is 0.00 (2)° while the corresponding value in compound (II) is 1.39°. The C4—C8 [1.467 (7) Å] bond length is in good agreement with the theoretically calculated single-bond lengths between trigonally linked (sp2) carbon atoms: 1.479 Å (Dewar & Schmeising, 1959) and 1.477 Å (Cruickshank & Sparks, 1960). The corresponding exocyclic C—C bond length is reported as 1.38 (4) Å in compound (II).

Figure 1.

Figure 1

The title compound with atom-numbering scheme and 50% probability ellipsoids. Symmetry codes: (i) x, −y + Inline graphic, z; (ii) x, −y + Inline graphic, z.

3. Supra­molecular features

In the crystal, inter­molecular C—H⋯Br and N—H⋯Br hydrogen bonds link the bromide ions and the 4-formyl-N,N-di­methyl­benzenaminium moieties (Table 1 and Fig. 2a). At the same time, inter­molecular C—H⋯O hydrogen bonds (Table 1) link pairs of mol­ecules through Inline graphic(18) hydrogen-bonding motifs, into a di-periodic network structure (Fig. 2a). The tetra­bromo­methane solvent mol­ecules occupy the spaces between the layers (Fig. 2b).

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯Br4 0.85 2.37 3.221 (4) 175
C6—H6A⋯Br4 0.95 2.91 3.698 (4) 141
C7—H7A⋯O1iii 0.98 2.52 3.424 (5) 153
C7—H7B⋯O1iv 0.98 2.47 3.390 (5) 157

Symmetry codes: (iii) Inline graphic; (iv) Inline graphic.

Figure 2.

Figure 2

(a) A partial packing diagram showing the presence of an Inline graphic(18) ring motif (upper right). (b) A packing diagram viewed approximately down the c-axis direction. Inter­molecular C—H⋯Br, N—H⋯Br and C—H⋯O hydrogen bonds are shown as dashed lines. Hydrogen atoms not involved in hydrogen bonds have been omitted for clarity.

4. Hirshfeld surface analysis

For visualizing the inter­molecular inter­actions in (I) a Hirshfeld surface (HS) analysis (Hirshfeld, 1977; Spackman & Jayatilaka, 2009) was carried out using Crystal Explorer 17.5 (Spackman et al., 2021). In the HS plotted over dnorm (Fig. 3), the white regions indicate contacts with distances equal to the sum of van der Waals radii, while the red and blue colours indicate distances shorter (in close contact) or longer (distant contact) than the sum of the van der Waals radii, respectively (Venkatesan et al., 2016), where the bright-red spots indicate their roles as the respective donors and/or acceptors. There are no π–π stacking inter­actions between aromatic rings in the packing of (I). Unusually, this is in spite of the presence of juxtaposed red/blue triangular regions in the HS plotted over shape-index (Fig. 4). There are also no C—H⋯π close contacts. According to the two-dimensional fingerprint plots (McKinnon et al., 2007), the inter­molecular H⋯Br/Br⋯H, Br⋯Br, H⋯O/O⋯H, H⋯H and H⋯C/C⋯H contacts make the most abundant contributions to the HS of 56%, 12.1%, 9.7%, 9.5% and 7.5% respectively (Table 2, Fig. 5). All other contact types contribute <5% to the surface. The nearest neighbour coordination environment of a mol­ecule can be determined from the colour patches on the HS based on how close to other mol­ecules they are. These are plotted onto the HS for the H⋯Br/Br⋯H, Br⋯Br, H⋯O/O⋯H and H⋯H inter­actions in Fig. 6, showing that van der Waals inter­actions and hydrogen bonding play the major roles in the crystal packing (Hathwar et al., 2015).

Figure 3.

Figure 3

View of the three-dimensional Hirshfeld surface plotted over dnorm.

Figure 4.

Figure 4

Hirshfeld surface of the title compound plotted over shape-index.

Table 2. Selected interatomic distances (Å).

Br3⋯Br4i 3.3403 (8) H7B⋯O1iv 2.47
H6A⋯Br3ii 2.95 C2⋯H7C 2.83
O1⋯H5A 2.57 C7⋯H2A 2.96
H7A⋯O1iii 2.52 H1N⋯H6A 2.22

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Figure 5.

Figure 5

Two-dimensional HS-fingerprint plots showing, (a) all inter­actions, and those delineated into (b)H⋯Br/Br⋯H, (c) Br⋯Br, (d) H⋯O/O⋯H, (e) H⋯H, (f) H⋯C/C⋯H inter­actions. The di and de values are the closest inter­nal and external distances (in Å) from given points on the Hirshfeld surface.

Figure 6.

Figure 6

The Hirshfeld surface representations plotted as fragment patches for (a) H⋯Br/Br⋯H, (b) Br⋯Br, (c) H⋯O/O⋯H and (d) H⋯H inter­actions.

5. Database survey

A substructure search of the Cambridge Structural Database [CSD Version 5.46 (November 2024); Groom, et al., 2016] using the 4-formyl-N,N-di­methyl­anilinium moiety was carried out, and 49 similar compounds were found. Of these compounds, seven are structurally related. These include: p-di­methyl­amino-benzaldehyde hydro­bromide, C9H12NOBr (CSD refcode MABZAL10; Dattagupta & Saha, 1973), 4-formyl-N,N-di­methyl­anilinium 4-methyl­benzene­sulfonate monohydrate, C9H12NO+·C7H7O3S·H2O (CSD refcode QAFROH; Jin et al., 2016a), ammonium 4-formyl-N,N-di­methyl­anilinium naphthalene-1,5-di­sulfonate ammonia, C9H12NO+·C10H6O6S22−·H4N+·H3N (CSD refcode SUYYUI; Jin et al., 2016b), 4-formyl-N,N-di­methyl­anilinium tetra­fluoro­borate, C9H12NO+·BF4 (CSD refcode VOJMEO; Froschauer et al., 2013) and 4-formyl-N,N-di­methyl­anilinium 2,4,6-tri­nitro­phenolate, C9H12NO+·C6H2N3O7 (CSD refcodes VUWLIJ: Thakuria et al., 2007; VUWLIJ01: Jin et al., 2016a; VUWLIJ02: Prasad, 2016). It is worth mentioning that the last three entries report different colours for the crystals (brown, colourless and metallic dark red).

6. Synthesis and crystallization

4-(Di­methyl­amino)­benzaldehyde (5 mmol) and tetra­bromo­methane (5 mmol) were dissolved in 25 ml of CHBr3, and left for slow evaporation. Orange crystals (suitable for X-ray analysis) of the product started to form after 1 d at room temperature; they were then filtered off and dried in air. Yield 59% (based on tetra­bromo­methane), orange powder soluble in methanol, ethanol and DMSO. Analysis calculated for C10H12Br5NO (Mr = 561.73): C, 21.38; H, 2.15; N, 2.49. Found: C, 21.36; H, 2.13; N, 2.47. 1H NMR (DMSO-d6), δ: 5.13 (–NHMe2), 9.67 (CHO), 7.70 and 7.68 (2H Ar), 6.80 and 6.78 (2H Ar), 3.05 (6H, 2CH3). 13C NMR (DMSO-d6), −29.2 (CBr4), 43.6 (2CH3), 111.2 (2CAr), 124.4 (CCHO), 133.6 (2CAr), 155.1 (CNMe2), 190.0 (C=O).

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. The N- and C-bound hydrogen-atom positions were calculated geometrically at distances of 0.85 Å (for NH), 0.95 Å (for CH) and 0.98 Å (for CH3) and refined using a riding model by applying the constraint Uiso = kUeq (C, N), where k = 1.2 for NH and CH hydrogen atoms and k = 1.5 for CH3 hydrogen atoms.

Table 3. Experimental details.

Crystal data
Chemical formula C9H12NO+·Br·CBr4
M r 561.76
Crystal system, space group Orthorhombic, Pnma
Temperature (K) 150
a, b, c (Å) 21.1900 (7), 7.4114 (2), 10.2297 (4)
V3) 1606.55 (9)
Z 4
Radiation type Mo Kα
μ (mm−1) 12.49
Crystal size (mm) 0.32 × 0.18 × 0.12
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015)
Tmin, Tmax 0.086, 0.254
No. of measured, independent and observed [I > 2σ(I)] reflections 9073, 1649, 1462
R int 0.027
(sin θ/λ)max−1) 0.611
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.064, 1.06
No. of reflections 1649
No. of parameters 98
No. of restraints 6
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.79, −1.21

Computer programs: APEX3 and SAINT (Bruker, 2014), SHELXT2019/1 (Sheldrick, 2015a), SHELXL2019/1 (Sheldrick, 2015b) and SHELXTL (Sheldrick, 2008).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989025006929/pk2717sup1.cif

e-81-00806-sup1.cif (293.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989025006929/pk2717Isup2.hkl

e-81-00806-Isup2.hkl (133.3KB, hkl)
e-81-00806-Isup3.cml (4.6KB, cml)

Supporting information file. DOI: 10.1107/S2056989025006929/pk2717Isup3.cml

CCDC reference: 2477918

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work has been supported by the Baku State University, Azerbaijan Medical University and Khazar University. TH is also grateful to Hacettepe University Scientific Research Project Unit (grant No. 013 D04 602 004). The authors’ contributions are as follows. Conceptualization, AVG, TH and ANB; synthesis, AVG and GZM; X-ray analysis, AVG; writing (review and editing of the manuscript) AVG and TH; funding acquisition, AVG, GZM, KIH and TAJ; supervision, AVG, TH and ANB.

supplementary crystallographic information

4-Formyl-N,N-dimethylanilinium bromide–tetrabromomethane (1/1) . Crystal data

C9H12NO+·Br·CBr4 Dx = 2.323 Mg m3
Mr = 561.76 Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pnma Cell parameters from 4744 reflections
a = 21.1900 (7) Å θ = 2.8–25.7°
b = 7.4114 (2) Å µ = 12.49 mm1
c = 10.2297 (4) Å T = 150 K
V = 1606.55 (9) Å3 Plate, orange
Z = 4 0.32 × 0.18 × 0.12 mm
F(000) = 1048

4-Formyl-N,N-dimethylanilinium bromide–tetrabromomethane (1/1) . Data collection

Bruker APEXII CCD diffractometer 1462 reflections with I > 2σ(I)
φ and ω scans Rint = 0.027
Absorption correction: multi-scan (SADABS; Krause et al., 2015) θmax = 25.7°, θmin = 2.8°
Tmin = 0.086, Tmax = 0.254 h = −25→25
9073 measured reflections k = −9→8
1649 independent reflections l = −11→12

4-Formyl-N,N-dimethylanilinium bromide–tetrabromomethane (1/1) . Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026 Hydrogen site location: mixed
wR(F2) = 0.064 H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0299P)2 + 4.3541P] where P = (Fo2 + 2Fc2)/3
1649 reflections (Δ/σ)max = 0.001
98 parameters Δρmax = 0.79 e Å3
6 restraints Δρmin = −1.21 e Å3

4-Formyl-N,N-dimethylanilinium bromide–tetrabromomethane (1/1) . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic)treatment of cell esds is used for estimating esds involving l.s. planes.

4-Formyl-N,N-dimethylanilinium bromide–tetrabromomethane (1/1) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br1 0.27771 (2) 0.53801 (5) 0.91970 (4) 0.02322 (12)
Br2 0.16582 (3) 0.750000 0.78589 (6) 0.03084 (16)
Br3 0.17920 (2) 0.750000 1.09645 (6) 0.02633 (15)
Br4 0.39332 (2) 0.250000 0.88637 (6) 0.02293 (15)
O1 0.53538 (19) 0.250000 0.1926 (4) 0.0295 (9)
N1 0.54209 (18) 0.250000 0.8217 (4) 0.0160 (9)
H1N 0.502359 0.250000 0.833231 0.019*
C1 0.55221 (17) 0.250000 0.6801 (5) 0.0158 (10)
C2 0.61354 (18) 0.250000 0.6293 (5) 0.0219 (11)
H2A 0.649120 0.250000 0.685839 0.026*
C3 0.6211 (2) 0.250000 0.4967 (5) 0.0244 (12)
H3A 0.662508 0.250000 0.460938 0.029*
C4 0.5690 (2) 0.250000 0.4127 (5) 0.0195 (11)
C5 0.5087 (2) 0.250000 0.4645 (4) 0.0247 (12)
H5A 0.473132 0.250000 0.407806 0.030*
C6 0.4998 (2) 0.250000 0.6000 (4) 0.0227 (12)
H6A 0.458558 0.250000 0.636234 0.027*
C7 0.56696 (17) 0.4161 (5) 0.8872 (3) 0.0201 (8)
H7A 0.556697 0.412102 0.980521 0.030*
H7B 0.547604 0.523040 0.847635 0.030*
H7C 0.612859 0.421721 0.876162 0.030*
C8 0.5776 (3) 0.250000 0.2704 (5) 0.0268 (13)
H8A 0.619581 0.250000 0.237724 0.032*
C9 0.2245 (2) 0.750000 0.9317 (5) 0.0193 (11)

4-Formyl-N,N-dimethylanilinium bromide–tetrabromomethane (1/1) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.01931 (18) 0.0224 (2) 0.0280 (2) 0.00397 (14) 0.00079 (15) 0.00030 (15)
Br2 0.0245 (3) 0.0342 (3) 0.0338 (4) 0.000 −0.0135 (2) 0.000
Br3 0.0197 (3) 0.0320 (3) 0.0273 (3) 0.000 0.0072 (2) 0.000
Br4 0.0177 (2) 0.0244 (3) 0.0266 (3) 0.000 0.0002 (2) 0.000
O1 0.039 (2) 0.038 (2) 0.012 (2) 0.000 −0.0011 (18) 0.000
N1 0.0140 (19) 0.024 (2) 0.010 (2) 0.000 −0.0006 (16) 0.000
C1 0.015 (2) 0.020 (2) 0.012 (3) 0.000 0.0019 (19) 0.000
C2 0.013 (2) 0.036 (3) 0.016 (3) 0.000 −0.002 (2) 0.000
C3 0.013 (2) 0.038 (3) 0.022 (3) 0.000 0.006 (2) 0.000
C4 0.021 (2) 0.025 (3) 0.013 (3) 0.000 0.002 (2) 0.000
C5 0.022 (3) 0.042 (3) 0.011 (3) 0.000 −0.003 (2) 0.000
C6 0.014 (2) 0.041 (3) 0.013 (3) 0.000 0.000 (2) 0.000
C7 0.0262 (17) 0.0209 (19) 0.0132 (19) −0.0021 (15) −0.0019 (15) −0.0029 (15)
C8 0.027 (3) 0.036 (3) 0.018 (3) 0.000 0.008 (2) 0.000
C9 0.013 (2) 0.022 (3) 0.022 (3) 0.000 0.001 (2) 0.000

4-Formyl-N,N-dimethylanilinium bromide–tetrabromomethane (1/1) . Geometric parameters (Å, º)

Br1—C9 1.937 (3) C3—C4 1.3998 (10)
Br2—C9 1.942 (5) C3—H3A 0.9500
Br3—C9 1.940 (5) C4—C5 1.384 (7)
O1—C8 1.198 (7) C4—C8 1.467 (7)
N1—C1 1.464 (6) C5—C6 1.3995 (10)
N1—C7i 1.497 (4) C5—H5A 0.9500
N1—C7 1.497 (4) C6—H6A 0.9500
N1—H1N 0.8501 C7—H7A 0.9800
C1—C6 1.379 (6) C7—H7B 0.9800
C1—C2 1.3997 (10) C7—H7C 0.9800
C2—C3 1.366 (7) C8—H8A 0.9500
C2—H2A 0.9500
Br3···Br4ii 3.3403 (8) H7B···O1v 2.47
H6A···Br3iii 2.95 C2···H7C 2.83
O1···H5A 2.57 C7···H2A 2.96
H7A···O1iv 2.52 H1N···H6A 2.22
C1—N1—C7i 113.0 (2) C6—C5—H5A 119.9
C1—N1—C7 113.0 (2) C1—C6—C5 118.8 (4)
C7i—N1—C7 110.6 (4) C1—C6—H6A 120.6
C1—N1—H1N 106.4 C5—C6—H6A 120.6
C7i—N1—H1N 106.7 N1—C7—H7A 109.5
C7—N1—H1N 106.6 N1—C7—H7B 109.5
C6—C1—C2 121.8 (4) H7A—C7—H7B 109.5
C6—C1—N1 118.0 (3) N1—C7—H7C 109.5
C2—C1—N1 120.2 (4) H7A—C7—H7C 109.5
C3—C2—C1 118.6 (4) H7B—C7—H7C 109.5
C3—C2—H2A 120.7 O1—C8—C4 124.5 (5)
C1—C2—H2A 120.7 O1—C8—H8A 117.7
C2—C3—C4 121.1 (4) C4—C8—H8A 117.7
C2—C3—H3A 119.4 Br1—C9—Br1vi 108.4 (2)
C4—C3—H3A 119.4 Br1—C9—Br3 110.07 (18)
C5—C4—C3 119.6 (4) Br1vi—C9—Br3 110.07 (18)
C5—C4—C8 119.6 (4) Br1—C9—Br2 108.90 (18)
C3—C4—C8 120.8 (5) Br1vi—C9—Br2 108.90 (18)
C4—C5—C6 120.2 (4) Br3—C9—Br2 110.5 (2)
C4—C5—H5A 119.9
C7i—N1—C1—C6 116.7 (3) C2—C3—C4—C8 180.000 (1)
C7—N1—C1—C6 −116.7 (3) C3—C4—C5—C6 0.000 (1)
C7i—N1—C1—C2 −63.3 (3) C8—C4—C5—C6 180.000 (1)
C7—N1—C1—C2 63.3 (3) C2—C1—C6—C5 0.000 (1)
C6—C1—C2—C3 0.000 (1) N1—C1—C6—C5 180.000 (1)
N1—C1—C2—C3 180.000 (1) C4—C5—C6—C1 0.000 (1)
C1—C2—C3—C4 0.000 (1) C5—C4—C8—O1 0.000 (1)
C2—C3—C4—C5 0.000 (1) C3—C4—C8—O1 180.000 (1)

Symmetry codes: (i) x, −y+1/2, z; (ii) −x+1/2, −y+1, z+1/2; (iii) −x+1/2, y−1/2, z−1/2; (iv) x, y, z+1; (v) −x+1, −y+1, −z+1; (vi) x, −y+3/2, z.

4-Formyl-N,N-dimethylanilinium bromide–tetrabromomethane (1/1) . Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1N···Br4 0.85 2.37 3.221 (4) 175
C6—H6A···Br4 0.95 2.91 3.698 (4) 141
C7—H7A···O1iv 0.98 2.52 3.424 (5) 153
C7—H7B···O1v 0.98 2.47 3.390 (5) 157

Symmetry codes: (iv) x, y, z+1; (v) −x+1, −y+1, −z+1.

References

  1. Bruker (2014). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Cruickshank, D. W. J. & Sparks, R. A. (1960). Proc. Roy. Soc. A258, 270–285.
  3. Dattagupta, J. K. & Saha, N. N. (1973). Acta Cryst. B29, 1228–1233.
  4. Dewar, M. J. S. & Schmeising, H. N. (1959). Tetrahedron5, 166–178.
  5. Froschauer, C., Weber, H. K., Kahlenberg, V., Laus, G. & Schottenberger, H. (2013). Crystals3, 248–256.
  6. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  7. Gurbanov, A. V., Kuznetsov, M. L., Karmakar, A., Aliyeva, V. A., Mahmudov, K. T. & Pombeiro, A. J. L. (2022). Dalton Trans.51, 1019–1031. [DOI] [PubMed]
  8. Gurbanov, A. V., Kuznetsov, M. L., Mahmudov, K. T., Pombeiro, A. J. L. & Resnati, G. (2020). Chem. A Eur. J.26, 14833–14837. [DOI] [PubMed]
  9. Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ2, 563–574. [DOI] [PMC free article] [PubMed]
  10. Hirshfeld, H. L. (1977). Theor. Chim. Acta44, 129–138.
  11. Jin, S., Wang, L., Liu, H., Liu, L., Zhang, H., Wang, D., Li, M., Guo, J. & Guo, M. (2016a). J. Mol. Struct.1116, 155–164.
  12. Jin, S., Wang, L., Lou, Y., Liu, L., Li, B., Li, L., Feng, C., Liu, H. & Wang, D. (2016b). J. Mol. Struct.1108, 735–747.
  13. Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst.48, 3–10. [DOI] [PMC free article] [PubMed]
  14. Ma, Z., Gurbanov, A. V., Sutradhar, M., Kopylovich, M. N., Mahmudov, K. T., Maharramov, A. M., Guseinov, F. I., Zubkov, F. I. & Pombeiro, A. J. L. (2017). J. Mol. Catal.428, 17–23.
  15. Ma, Z., Mahmudov, K. T., Aliyeva, V. A., Gurbanov, A. V., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2021). Coord. Chem. Rev.437, 213859.
  16. Mahmoudi, G., Afkhami, F. A., Castiñeiras, A., García-Santos, I., Gurbanov, A. V., Zubkov, F. I., Mitoraj, M. P., Kukułka, M., Sagan, F., Szczepanik, D. W., Konyaeva, I. A. & Safin, D. A. (2018). Inorg. Chem.57, 4395–4408. [DOI] [PubMed]
  17. Mahmudov, K. T. & Pombeiro, A. J. L. (2023). Chem. A Eur. J.29, e202203861. [DOI] [PubMed]
  18. McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. [DOI] [PubMed]
  19. Prasad, A. A. (2016). CSD Communication (Refcode VUWLIJ02). CCDC, Cambridge, England.
  20. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  21. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  22. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  23. Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm11, 19–32.
  24. Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst.54, 1006–1011. [DOI] [PMC free article] [PubMed]
  25. Sutar, R. L. & Huber, S. M. (2019). ACS Catal.9, 9622–9639.
  26. Thakuria, H., Borah, B. M., Pramanik, A. & Das, G. (2007). J. Chem. Crystallogr.37, 807–816.
  27. Velásquez, J. D., Mahmoudi, G., Zangrando, E., Gurbanov, A. V., Zubkov, F. I., Zorlu, Y., Masoudiasl, A. & Echeverría, J. (2019). CrystEngComm21, 6018–6025.
  28. Venkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta A Mol. Biomol. Spectrosc.153, 625–636. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989025006929/pk2717sup1.cif

e-81-00806-sup1.cif (293.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989025006929/pk2717Isup2.hkl

e-81-00806-Isup2.hkl (133.3KB, hkl)
e-81-00806-Isup3.cml (4.6KB, cml)

Supporting information file. DOI: 10.1107/S2056989025006929/pk2717Isup3.cml

CCDC reference: 2477918

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES