In the title compound, bromide ions link 4-formyl-N,N-dimethylbenzenaminium molecules through intermolecular C—H⋯Br and N—H⋯Br hydrogen bonds, while intermolecular C—H⋯O hydrogen bonds link the cations, enclosing R22(18) ring motifs, into a di-periodic network structure. The tetrabromomethane molecules fill the spaces between the layers.
Keywords: crystal structure, non-covalent interactions, hydrogen bond, benzenaminium
Abstract
The title compound, C9H12NO+·Br−·CBr4, consists of one 4-formyl-N,N-dimethylbenzenaminium bromide and a tetrabromomethane molecule. In the crystal, the bromide ions link 4-formyl-N,N-dimethylbenzenaminium moieties through intermolecular C—H⋯Br and N—H⋯Br hydrogen bonds, while intermolecular C—H⋯O hydrogen bonds link 4-formyl-N,N-dimethylbenzenaminium cations, enclosing R22(18) ring motifs, into a di-periodic network structure. The tetrabromomethane molecules fill the spaces between the layers. Neither π–π nor C—H⋯π(ring) interactions are observed. A Hirshfeld surface analysis of the crystal structure indicates that the most abundant contacts contributing to the crystal packing are from H⋯Br/Br⋯H (56.0%), Br⋯Br (12.1%), H⋯O/O⋯H (9.7%) and H⋯H (9.5%) interactions.
1. Chemical context
Aldehydes are versatile compounds for the synthesis of organic acids, dyes, drugs, perfumes, detergents, soaps, etc. In the synthesis of those compounds the aldehydes undergo many different nucleophilic addition reactions. In order to increase the electrophilicity of the carbon atom at the C=O group of the aldehyde molecule, metal complexes or organocatalysts are commonly used (Ma et al., 2017 ▸, 2021 ▸; Mahmudov & Pombeiro, 2023 ▸). Following crystal engineering principles (Gurbanov et al., 2020 ▸; Mahmoudi et al., 2018 ▸; Velásquez et al., 2019 ▸), weak interactions, halogen bonds, and other interactions, have been used in the activation of aldehydes towards the synthesis of various classes of organic compounds (Gurbanov et al., 2022 ▸; Sutar & Huber, 2019 ▸). We found that weak interactions can be formed with substituents at the aldehyde molecules instead of with the oxygen atom of the C=O group.
Herein, we provide details of the synthesis and an examination of the molecular and crystal structures, together with a Hirshfeld surface analysis, of the title compound (I).
2. Structural commentary
The title compound, (I), consists of one 4-formyl-N,N-dimethylbenzenaminium bromide unit and a tetrabromomethane solvent molecule (Fig. 1 ▸). The C—C and C—C—C bond lengths and angles of ring A are in the ranges 1.366 (7) to 1.3998 (10) Å and 118.6 (4) to 121.8 (4)° with average values of 1.388 (8) Å and 120.0 (4)°, respectively. These values are reported as 1.375 Å and 119.9° in p-dimethylamino-benzaldehyde hydrobromide, (II) (Dattagupta & Saha, 1973 ▸). Both of the N—C bonds between the methyl carbon and amino nitrogen atoms are 1.497 (4) Å, and the corresponding ones in compound (II) are 1.51 (4) and 1.43 (4) Å. The C=O bond length in the aldehyde group is 1.198 (7) Å, and its corresponding value is 1.18 (4) Å in compound (II). The dihedral angle between ring A and the plane of atoms (O1/C4/C8) is 0.00 (2)° while the corresponding value in compound (II) is 1.39°. The C4—C8 [1.467 (7) Å] bond length is in good agreement with the theoretically calculated single-bond lengths between trigonally linked (sp2) carbon atoms: 1.479 Å (Dewar & Schmeising, 1959 ▸) and 1.477 Å (Cruickshank & Sparks, 1960 ▸). The corresponding exocyclic C—C bond length is reported as 1.38 (4) Å in compound (II).
Figure 1.
The title compound with atom-numbering scheme and 50% probability ellipsoids. Symmetry codes: (i) x, −y +
, z; (ii) x, −y +
, z.
3. Supramolecular features
In the crystal, intermolecular C—H⋯Br and N—H⋯Br hydrogen bonds link the bromide ions and the 4-formyl-N,N-dimethylbenzenaminium moieties (Table 1 ▸ and Fig. 2 ▸a). At the same time, intermolecular C—H⋯O hydrogen bonds (Table 1 ▸) link pairs of molecules through
(18) hydrogen-bonding motifs, into a di-periodic network structure (Fig. 2 ▸a). The tetrabromomethane solvent molecules occupy the spaces between the layers (Fig. 2 ▸b).
Table 1. Hydrogen-bond geometry (Å, °).
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| N1—H1N⋯Br4 | 0.85 | 2.37 | 3.221 (4) | 175 |
| C6—H6A⋯Br4 | 0.95 | 2.91 | 3.698 (4) | 141 |
| C7—H7A⋯O1iii | 0.98 | 2.52 | 3.424 (5) | 153 |
| C7—H7B⋯O1iv | 0.98 | 2.47 | 3.390 (5) | 157 |
Symmetry codes: (iii)
; (iv)
.
Figure 2.
(a) A partial packing diagram showing the presence of an
(18) ring motif (upper right). (b) A packing diagram viewed approximately down the c-axis direction. Intermolecular C—H⋯Br, N—H⋯Br and C—H⋯O hydrogen bonds are shown as dashed lines. Hydrogen atoms not involved in hydrogen bonds have been omitted for clarity.
4. Hirshfeld surface analysis
For visualizing the intermolecular interactions in (I) a Hirshfeld surface (HS) analysis (Hirshfeld, 1977 ▸; Spackman & Jayatilaka, 2009 ▸) was carried out using Crystal Explorer 17.5 (Spackman et al., 2021 ▸). In the HS plotted over dnorm (Fig. 3 ▸), the white regions indicate contacts with distances equal to the sum of van der Waals radii, while the red and blue colours indicate distances shorter (in close contact) or longer (distant contact) than the sum of the van der Waals radii, respectively (Venkatesan et al., 2016 ▸), where the bright-red spots indicate their roles as the respective donors and/or acceptors. There are no π–π stacking interactions between aromatic rings in the packing of (I). Unusually, this is in spite of the presence of juxtaposed red/blue triangular regions in the HS plotted over shape-index (Fig. 4 ▸). There are also no C—H⋯π close contacts. According to the two-dimensional fingerprint plots (McKinnon et al., 2007 ▸), the intermolecular H⋯Br/Br⋯H, Br⋯Br, H⋯O/O⋯H, H⋯H and H⋯C/C⋯H contacts make the most abundant contributions to the HS of 56%, 12.1%, 9.7%, 9.5% and 7.5% respectively (Table 2 ▸, Fig. 5 ▸). All other contact types contribute <5% to the surface. The nearest neighbour coordination environment of a molecule can be determined from the colour patches on the HS based on how close to other molecules they are. These are plotted onto the HS for the H⋯Br/Br⋯H, Br⋯Br, H⋯O/O⋯H and H⋯H interactions in Fig. 6 ▸, showing that van der Waals interactions and hydrogen bonding play the major roles in the crystal packing (Hathwar et al., 2015 ▸).
Figure 3.
View of the three-dimensional Hirshfeld surface plotted over dnorm.
Figure 4.
Hirshfeld surface of the title compound plotted over shape-index.
Table 2. Selected interatomic distances (Å).
| Br3⋯Br4i | 3.3403 (8) | H7B⋯O1iv | 2.47 |
| H6A⋯Br3ii | 2.95 | C2⋯H7C | 2.83 |
| O1⋯H5A | 2.57 | C7⋯H2A | 2.96 |
| H7A⋯O1iii | 2.52 | H1N⋯H6A | 2.22 |
Symmetry codes: (i)
; (ii)
; (iii)
; (iv)
.
Figure 5.
Two-dimensional HS-fingerprint plots showing, (a) all interactions, and those delineated into (b)H⋯Br/Br⋯H, (c) Br⋯Br, (d) H⋯O/O⋯H, (e) H⋯H, (f) H⋯C/C⋯H interactions. The di and de values are the closest internal and external distances (in Å) from given points on the Hirshfeld surface.
Figure 6.
The Hirshfeld surface representations plotted as fragment patches for (a) H⋯Br/Br⋯H, (b) Br⋯Br, (c) H⋯O/O⋯H and (d) H⋯H interactions.
5. Database survey
A substructure search of the Cambridge Structural Database [CSD Version 5.46 (November 2024); Groom, et al., 2016 ▸] using the 4-formyl-N,N-dimethylanilinium moiety was carried out, and 49 similar compounds were found. Of these compounds, seven are structurally related. These include: p-dimethylamino-benzaldehyde hydrobromide, C9H12NOBr (CSD refcode MABZAL10; Dattagupta & Saha, 1973 ▸), 4-formyl-N,N-dimethylanilinium 4-methylbenzenesulfonate monohydrate, C9H12NO+·C7H7O3S−·H2O (CSD refcode QAFROH; Jin et al., 2016a ▸), ammonium 4-formyl-N,N-dimethylanilinium naphthalene-1,5-disulfonate ammonia, C9H12NO+·C10H6O6S22−·H4N+·H3N (CSD refcode SUYYUI; Jin et al., 2016b ▸), 4-formyl-N,N-dimethylanilinium tetrafluoroborate, C9H12NO+·BF4− (CSD refcode VOJMEO; Froschauer et al., 2013 ▸) and 4-formyl-N,N-dimethylanilinium 2,4,6-trinitrophenolate, C9H12NO+·C6H2N3O7− (CSD refcodes VUWLIJ: Thakuria et al., 2007 ▸; VUWLIJ01: Jin et al., 2016a ▸; VUWLIJ02: Prasad, 2016 ▸). It is worth mentioning that the last three entries report different colours for the crystals (brown, colourless and metallic dark red).
6. Synthesis and crystallization
4-(Dimethylamino)benzaldehyde (5 mmol) and tetrabromomethane (5 mmol) were dissolved in 25 ml of CHBr3, and left for slow evaporation. Orange crystals (suitable for X-ray analysis) of the product started to form after 1 d at room temperature; they were then filtered off and dried in air. Yield 59% (based on tetrabromomethane), orange powder soluble in methanol, ethanol and DMSO. Analysis calculated for C10H12Br5NO (Mr = 561.73): C, 21.38; H, 2.15; N, 2.49. Found: C, 21.36; H, 2.13; N, 2.47. 1H NMR (DMSO-d6), δ: 5.13 (–NHMe2), 9.67 (CHO), 7.70 and 7.68 (2H Ar), 6.80 and 6.78 (2H Ar), 3.05 (6H, 2CH3). 13C NMR (DMSO-d6), −29.2 (CBr4), 43.6 (2CH3), 111.2 (2CAr), 124.4 (CCHO), 133.6 (2CAr), 155.1 (CNMe2), 190.0 (C=O).
7. Refinement
Crystal data, data collection and structure refinement details are summarized in Table 3 ▸. The N- and C-bound hydrogen-atom positions were calculated geometrically at distances of 0.85 Å (for NH), 0.95 Å (for CH) and 0.98 Å (for CH3) and refined using a riding model by applying the constraint Uiso = kUeq (C, N), where k = 1.2 for NH and CH hydrogen atoms and k = 1.5 for CH3 hydrogen atoms.
Table 3. Experimental details.
| Crystal data | |
| Chemical formula | C9H12NO+·Br−·CBr4 |
| M r | 561.76 |
| Crystal system, space group | Orthorhombic, Pnma |
| Temperature (K) | 150 |
| a, b, c (Å) | 21.1900 (7), 7.4114 (2), 10.2297 (4) |
| V (Å3) | 1606.55 (9) |
| Z | 4 |
| Radiation type | Mo Kα |
| μ (mm−1) | 12.49 |
| Crystal size (mm) | 0.32 × 0.18 × 0.12 |
| Data collection | |
| Diffractometer | Bruker APEXII CCD |
| Absorption correction | Multi-scan (SADABS; Krause et al., 2015 ▸) |
| Tmin, Tmax | 0.086, 0.254 |
| No. of measured, independent and observed [I > 2σ(I)] reflections | 9073, 1649, 1462 |
| R int | 0.027 |
| (sin θ/λ)max (Å−1) | 0.611 |
| Refinement | |
| R[F2 > 2σ(F2)], wR(F2), S | 0.026, 0.064, 1.06 |
| No. of reflections | 1649 |
| No. of parameters | 98 |
| No. of restraints | 6 |
| H-atom treatment | H-atom parameters constrained |
| Δρmax, Δρmin (e Å−3) | 0.79, −1.21 |
Supplementary Material
Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989025006929/pk2717sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989025006929/pk2717Isup2.hkl
Supporting information file. DOI: 10.1107/S2056989025006929/pk2717Isup3.cml
CCDC reference: 2477918
Additional supporting information: crystallographic information; 3D view; checkCIF report
Acknowledgments
This work has been supported by the Baku State University, Azerbaijan Medical University and Khazar University. TH is also grateful to Hacettepe University Scientific Research Project Unit (grant No. 013 D04 602 004). The authors’ contributions are as follows. Conceptualization, AVG, TH and ANB; synthesis, AVG and GZM; X-ray analysis, AVG; writing (review and editing of the manuscript) AVG and TH; funding acquisition, AVG, GZM, KIH and TAJ; supervision, AVG, TH and ANB.
supplementary crystallographic information
4-Formyl-N,N-dimethylanilinium bromide–tetrabromomethane (1/1) . Crystal data
| C9H12NO+·Br−·CBr4 | Dx = 2.323 Mg m−3 |
| Mr = 561.76 | Mo Kα radiation, λ = 0.71073 Å |
| Orthorhombic, Pnma | Cell parameters from 4744 reflections |
| a = 21.1900 (7) Å | θ = 2.8–25.7° |
| b = 7.4114 (2) Å | µ = 12.49 mm−1 |
| c = 10.2297 (4) Å | T = 150 K |
| V = 1606.55 (9) Å3 | Plate, orange |
| Z = 4 | 0.32 × 0.18 × 0.12 mm |
| F(000) = 1048 |
4-Formyl-N,N-dimethylanilinium bromide–tetrabromomethane (1/1) . Data collection
| Bruker APEXII CCD diffractometer | 1462 reflections with I > 2σ(I) |
| φ and ω scans | Rint = 0.027 |
| Absorption correction: multi-scan (SADABS; Krause et al., 2015) | θmax = 25.7°, θmin = 2.8° |
| Tmin = 0.086, Tmax = 0.254 | h = −25→25 |
| 9073 measured reflections | k = −9→8 |
| 1649 independent reflections | l = −11→12 |
4-Formyl-N,N-dimethylanilinium bromide–tetrabromomethane (1/1) . Refinement
| Refinement on F2 | Primary atom site location: structure-invariant direct methods |
| Least-squares matrix: full | Secondary atom site location: difference Fourier map |
| R[F2 > 2σ(F2)] = 0.026 | Hydrogen site location: mixed |
| wR(F2) = 0.064 | H-atom parameters constrained |
| S = 1.06 | w = 1/[σ2(Fo2) + (0.0299P)2 + 4.3541P] where P = (Fo2 + 2Fc2)/3 |
| 1649 reflections | (Δ/σ)max = 0.001 |
| 98 parameters | Δρmax = 0.79 e Å−3 |
| 6 restraints | Δρmin = −1.21 e Å−3 |
4-Formyl-N,N-dimethylanilinium bromide–tetrabromomethane (1/1) . Special details
| Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic)treatment of cell esds is used for estimating esds involving l.s. planes. |
4-Formyl-N,N-dimethylanilinium bromide–tetrabromomethane (1/1) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| Br1 | 0.27771 (2) | 0.53801 (5) | 0.91970 (4) | 0.02322 (12) | |
| Br2 | 0.16582 (3) | 0.750000 | 0.78589 (6) | 0.03084 (16) | |
| Br3 | 0.17920 (2) | 0.750000 | 1.09645 (6) | 0.02633 (15) | |
| Br4 | 0.39332 (2) | 0.250000 | 0.88637 (6) | 0.02293 (15) | |
| O1 | 0.53538 (19) | 0.250000 | 0.1926 (4) | 0.0295 (9) | |
| N1 | 0.54209 (18) | 0.250000 | 0.8217 (4) | 0.0160 (9) | |
| H1N | 0.502359 | 0.250000 | 0.833231 | 0.019* | |
| C1 | 0.55221 (17) | 0.250000 | 0.6801 (5) | 0.0158 (10) | |
| C2 | 0.61354 (18) | 0.250000 | 0.6293 (5) | 0.0219 (11) | |
| H2A | 0.649120 | 0.250000 | 0.685839 | 0.026* | |
| C3 | 0.6211 (2) | 0.250000 | 0.4967 (5) | 0.0244 (12) | |
| H3A | 0.662508 | 0.250000 | 0.460938 | 0.029* | |
| C4 | 0.5690 (2) | 0.250000 | 0.4127 (5) | 0.0195 (11) | |
| C5 | 0.5087 (2) | 0.250000 | 0.4645 (4) | 0.0247 (12) | |
| H5A | 0.473132 | 0.250000 | 0.407806 | 0.030* | |
| C6 | 0.4998 (2) | 0.250000 | 0.6000 (4) | 0.0227 (12) | |
| H6A | 0.458558 | 0.250000 | 0.636234 | 0.027* | |
| C7 | 0.56696 (17) | 0.4161 (5) | 0.8872 (3) | 0.0201 (8) | |
| H7A | 0.556697 | 0.412102 | 0.980521 | 0.030* | |
| H7B | 0.547604 | 0.523040 | 0.847635 | 0.030* | |
| H7C | 0.612859 | 0.421721 | 0.876162 | 0.030* | |
| C8 | 0.5776 (3) | 0.250000 | 0.2704 (5) | 0.0268 (13) | |
| H8A | 0.619581 | 0.250000 | 0.237724 | 0.032* | |
| C9 | 0.2245 (2) | 0.750000 | 0.9317 (5) | 0.0193 (11) |
4-Formyl-N,N-dimethylanilinium bromide–tetrabromomethane (1/1) . Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| Br1 | 0.01931 (18) | 0.0224 (2) | 0.0280 (2) | 0.00397 (14) | 0.00079 (15) | 0.00030 (15) |
| Br2 | 0.0245 (3) | 0.0342 (3) | 0.0338 (4) | 0.000 | −0.0135 (2) | 0.000 |
| Br3 | 0.0197 (3) | 0.0320 (3) | 0.0273 (3) | 0.000 | 0.0072 (2) | 0.000 |
| Br4 | 0.0177 (2) | 0.0244 (3) | 0.0266 (3) | 0.000 | 0.0002 (2) | 0.000 |
| O1 | 0.039 (2) | 0.038 (2) | 0.012 (2) | 0.000 | −0.0011 (18) | 0.000 |
| N1 | 0.0140 (19) | 0.024 (2) | 0.010 (2) | 0.000 | −0.0006 (16) | 0.000 |
| C1 | 0.015 (2) | 0.020 (2) | 0.012 (3) | 0.000 | 0.0019 (19) | 0.000 |
| C2 | 0.013 (2) | 0.036 (3) | 0.016 (3) | 0.000 | −0.002 (2) | 0.000 |
| C3 | 0.013 (2) | 0.038 (3) | 0.022 (3) | 0.000 | 0.006 (2) | 0.000 |
| C4 | 0.021 (2) | 0.025 (3) | 0.013 (3) | 0.000 | 0.002 (2) | 0.000 |
| C5 | 0.022 (3) | 0.042 (3) | 0.011 (3) | 0.000 | −0.003 (2) | 0.000 |
| C6 | 0.014 (2) | 0.041 (3) | 0.013 (3) | 0.000 | 0.000 (2) | 0.000 |
| C7 | 0.0262 (17) | 0.0209 (19) | 0.0132 (19) | −0.0021 (15) | −0.0019 (15) | −0.0029 (15) |
| C8 | 0.027 (3) | 0.036 (3) | 0.018 (3) | 0.000 | 0.008 (2) | 0.000 |
| C9 | 0.013 (2) | 0.022 (3) | 0.022 (3) | 0.000 | 0.001 (2) | 0.000 |
4-Formyl-N,N-dimethylanilinium bromide–tetrabromomethane (1/1) . Geometric parameters (Å, º)
| Br1—C9 | 1.937 (3) | C3—C4 | 1.3998 (10) |
| Br2—C9 | 1.942 (5) | C3—H3A | 0.9500 |
| Br3—C9 | 1.940 (5) | C4—C5 | 1.384 (7) |
| O1—C8 | 1.198 (7) | C4—C8 | 1.467 (7) |
| N1—C1 | 1.464 (6) | C5—C6 | 1.3995 (10) |
| N1—C7i | 1.497 (4) | C5—H5A | 0.9500 |
| N1—C7 | 1.497 (4) | C6—H6A | 0.9500 |
| N1—H1N | 0.8501 | C7—H7A | 0.9800 |
| C1—C6 | 1.379 (6) | C7—H7B | 0.9800 |
| C1—C2 | 1.3997 (10) | C7—H7C | 0.9800 |
| C2—C3 | 1.366 (7) | C8—H8A | 0.9500 |
| C2—H2A | 0.9500 | ||
| Br3···Br4ii | 3.3403 (8) | H7B···O1v | 2.47 |
| H6A···Br3iii | 2.95 | C2···H7C | 2.83 |
| O1···H5A | 2.57 | C7···H2A | 2.96 |
| H7A···O1iv | 2.52 | H1N···H6A | 2.22 |
| C1—N1—C7i | 113.0 (2) | C6—C5—H5A | 119.9 |
| C1—N1—C7 | 113.0 (2) | C1—C6—C5 | 118.8 (4) |
| C7i—N1—C7 | 110.6 (4) | C1—C6—H6A | 120.6 |
| C1—N1—H1N | 106.4 | C5—C6—H6A | 120.6 |
| C7i—N1—H1N | 106.7 | N1—C7—H7A | 109.5 |
| C7—N1—H1N | 106.6 | N1—C7—H7B | 109.5 |
| C6—C1—C2 | 121.8 (4) | H7A—C7—H7B | 109.5 |
| C6—C1—N1 | 118.0 (3) | N1—C7—H7C | 109.5 |
| C2—C1—N1 | 120.2 (4) | H7A—C7—H7C | 109.5 |
| C3—C2—C1 | 118.6 (4) | H7B—C7—H7C | 109.5 |
| C3—C2—H2A | 120.7 | O1—C8—C4 | 124.5 (5) |
| C1—C2—H2A | 120.7 | O1—C8—H8A | 117.7 |
| C2—C3—C4 | 121.1 (4) | C4—C8—H8A | 117.7 |
| C2—C3—H3A | 119.4 | Br1—C9—Br1vi | 108.4 (2) |
| C4—C3—H3A | 119.4 | Br1—C9—Br3 | 110.07 (18) |
| C5—C4—C3 | 119.6 (4) | Br1vi—C9—Br3 | 110.07 (18) |
| C5—C4—C8 | 119.6 (4) | Br1—C9—Br2 | 108.90 (18) |
| C3—C4—C8 | 120.8 (5) | Br1vi—C9—Br2 | 108.90 (18) |
| C4—C5—C6 | 120.2 (4) | Br3—C9—Br2 | 110.5 (2) |
| C4—C5—H5A | 119.9 | ||
| C7i—N1—C1—C6 | 116.7 (3) | C2—C3—C4—C8 | 180.000 (1) |
| C7—N1—C1—C6 | −116.7 (3) | C3—C4—C5—C6 | 0.000 (1) |
| C7i—N1—C1—C2 | −63.3 (3) | C8—C4—C5—C6 | 180.000 (1) |
| C7—N1—C1—C2 | 63.3 (3) | C2—C1—C6—C5 | 0.000 (1) |
| C6—C1—C2—C3 | 0.000 (1) | N1—C1—C6—C5 | 180.000 (1) |
| N1—C1—C2—C3 | 180.000 (1) | C4—C5—C6—C1 | 0.000 (1) |
| C1—C2—C3—C4 | 0.000 (1) | C5—C4—C8—O1 | 0.000 (1) |
| C2—C3—C4—C5 | 0.000 (1) | C3—C4—C8—O1 | 180.000 (1) |
Symmetry codes: (i) x, −y+1/2, z; (ii) −x+1/2, −y+1, z+1/2; (iii) −x+1/2, y−1/2, z−1/2; (iv) x, y, z+1; (v) −x+1, −y+1, −z+1; (vi) x, −y+3/2, z.
4-Formyl-N,N-dimethylanilinium bromide–tetrabromomethane (1/1) . Hydrogen-bond geometry (Å, º)
| D—H···A | D—H | H···A | D···A | D—H···A |
| N1—H1N···Br4 | 0.85 | 2.37 | 3.221 (4) | 175 |
| C6—H6A···Br4 | 0.95 | 2.91 | 3.698 (4) | 141 |
| C7—H7A···O1iv | 0.98 | 2.52 | 3.424 (5) | 153 |
| C7—H7B···O1v | 0.98 | 2.47 | 3.390 (5) | 157 |
Symmetry codes: (iv) x, y, z+1; (v) −x+1, −y+1, −z+1.
References
- Bruker (2014). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cruickshank, D. W. J. & Sparks, R. A. (1960). Proc. Roy. Soc. A258, 270–285.
- Dattagupta, J. K. & Saha, N. N. (1973). Acta Cryst. B29, 1228–1233.
- Dewar, M. J. S. & Schmeising, H. N. (1959). Tetrahedron5, 166–178.
- Froschauer, C., Weber, H. K., Kahlenberg, V., Laus, G. & Schottenberger, H. (2013). Crystals3, 248–256.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
- Gurbanov, A. V., Kuznetsov, M. L., Karmakar, A., Aliyeva, V. A., Mahmudov, K. T. & Pombeiro, A. J. L. (2022). Dalton Trans.51, 1019–1031. [DOI] [PubMed]
- Gurbanov, A. V., Kuznetsov, M. L., Mahmudov, K. T., Pombeiro, A. J. L. & Resnati, G. (2020). Chem. A Eur. J.26, 14833–14837. [DOI] [PubMed]
- Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ2, 563–574. [DOI] [PMC free article] [PubMed]
- Hirshfeld, H. L. (1977). Theor. Chim. Acta44, 129–138.
- Jin, S., Wang, L., Liu, H., Liu, L., Zhang, H., Wang, D., Li, M., Guo, J. & Guo, M. (2016a). J. Mol. Struct.1116, 155–164.
- Jin, S., Wang, L., Lou, Y., Liu, L., Li, B., Li, L., Feng, C., Liu, H. & Wang, D. (2016b). J. Mol. Struct.1108, 735–747.
- Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst.48, 3–10. [DOI] [PMC free article] [PubMed]
- Ma, Z., Gurbanov, A. V., Sutradhar, M., Kopylovich, M. N., Mahmudov, K. T., Maharramov, A. M., Guseinov, F. I., Zubkov, F. I. & Pombeiro, A. J. L. (2017). J. Mol. Catal.428, 17–23.
- Ma, Z., Mahmudov, K. T., Aliyeva, V. A., Gurbanov, A. V., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2021). Coord. Chem. Rev.437, 213859.
- Mahmoudi, G., Afkhami, F. A., Castiñeiras, A., García-Santos, I., Gurbanov, A. V., Zubkov, F. I., Mitoraj, M. P., Kukułka, M., Sagan, F., Szczepanik, D. W., Konyaeva, I. A. & Safin, D. A. (2018). Inorg. Chem.57, 4395–4408. [DOI] [PubMed]
- Mahmudov, K. T. & Pombeiro, A. J. L. (2023). Chem. A Eur. J.29, e202203861. [DOI] [PubMed]
- McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. [DOI] [PubMed]
- Prasad, A. A. (2016). CSD Communication (Refcode VUWLIJ02). CCDC, Cambridge, England.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
- Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm11, 19–32.
- Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst.54, 1006–1011. [DOI] [PMC free article] [PubMed]
- Sutar, R. L. & Huber, S. M. (2019). ACS Catal.9, 9622–9639.
- Thakuria, H., Borah, B. M., Pramanik, A. & Das, G. (2007). J. Chem. Crystallogr.37, 807–816.
- Velásquez, J. D., Mahmoudi, G., Zangrando, E., Gurbanov, A. V., Zubkov, F. I., Zorlu, Y., Masoudiasl, A. & Echeverría, J. (2019). CrystEngComm21, 6018–6025.
- Venkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta A Mol. Biomol. Spectrosc.153, 625–636. [DOI] [PubMed]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989025006929/pk2717sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989025006929/pk2717Isup2.hkl
Supporting information file. DOI: 10.1107/S2056989025006929/pk2717Isup3.cml
CCDC reference: 2477918
Additional supporting information: crystallographic information; 3D view; checkCIF report






