Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2025 Aug 7;81(Pt 9):816–820. doi: 10.1107/S2056989025006814

Crystal structure and Hirshfeld surface analysis of (3aRS,4RS,10SR,10aSR)-2-(3,5-di­methyl­phen­yl)-4-hy­droxy-10-methyl-1-oxo-2,3,3a,4,10,10a-hexa­hydro-1H-[1]benzofuro[2,3-f]iso­indole-10-carb­oxy­lic acid di­methyl­formamide monosolvate

Elizaveta D Yakovleva a, Victoria I Salakhova a, Victor N Khrustalev a,b, Roya Z Nazarova c, Khudayar I Hasanov d, Tahir A Javadzade e, Mehmet Akkurt f, Gizachew Mulugeta Manahelohe g,*
Editor: J Ellenah
PMCID: PMC12412706  PMID: 40918575

The mol­ecular conformation of the title compound, C24H23NO5·C3H7NO, is consolidated by intra­molecular C—H⋯O O—H⋯O hydrogen bonds, forming an S(6) ring motif. In the crystal, the mol­ecules are connected by C—H⋯O hydrogen bonds, forming layers parallel to the (101) plane. Additionally, C—H⋯π inter­actions lead to the formation of layers parallel to the (102) plane.

Keywords: crystal structure, hydrogen bonds, envelope conformation, Hirshfeld surface analysis

Abstract

The mol­ecular conformation of the title compound, C24H23NO5·C3H7NO, is consolidated by intra­molecular C—H⋯O O—H⋯O hydrogen bonds, forming an S(6) ring motif. In the crystal, the mol­ecules are connected by C—H⋯O hydrogen bonds, forming layers parallel to the (101) plane. Furthermore, the mol­ecules form layers parallel to the (102) plane by C—H⋯π inter­actions. Important inter­molecular inter­actions highlighted by Hirshfeld surface analysis are H⋯H (54.7%), O⋯H/H⋯O (23.0%), and C⋯H/H⋯C (19.9%) contacts.

1. Chemical context

The IMDAV reaction (Intra-Mol­ecular Diels–Alder in Vinyl­heteroarenes) is a useful tool for the one-step synthesis of benzo­furans, indoles, benzo­thio­phenes, and pyrrolo­pyridines annulated with other carbocycles and heterocycles (Horak et al., 2017; Krishna et al., 2022; Nadirova et al., 2020; Shelukho et al., 2025; Yakovleva et al., 2024; Zaytsev et al., 2023, 2025; Zubkov et al., 2016). In a continuation of our research on the properties of vinyl­heteroarene systems previously obtained via tandem acyl­ation/[4 + 2] cyclo­addition between 3-(heteroar­yl)allyl­amines and maleic anhydrides, an example of an IMDAV reaction, we present here the second instance of spontaneous slow oxidation of adduct 1 (Fig. 1) in DMSO under aerobic conditions. Previous studies have shown that benzothienoisoindolones of type 1 undergo oxidation when stored for a long time in DMSO at room temperature (Mammadova et al., 2023). Presumably, the DMSO acts as a mild oxidant, as observed in several other oxidation reactions, including the Pfitzner–Moffatt, Corey–Kim, Swern, and Kornblum oxidations (Epstein et al., 1967).

Figure 1.

Figure 1

Synthesis of (3aRS,4RS,10SR,10aSR)-2-(3,5-di­methyl­phen­yl)-4-hy­droxy-10-methyl-1-oxo-2,3,3a,4,10,10a-hexa­hydro-1H-[1]benzofuro[2,3-f]iso­indole-10-carb­oxy­lic acid (2).

Slow oxidation of (3aRS,9bRS,10RS,10aSR)-2-(3,5-di­methyl­phen­yl)-10-methyl-1-oxo-2,3,3a,9b,10,10a-hexa­hydro-1H-[1]benzofuro[2,3-f]iso­indole-10-carb­oxy­lic acid (1) occurs when the solution is stirred in dimethyl sulfoxide (DMSO) for one month at r.t. The title compound 2 was isolated in a 53% yield after standard treatment of the reaction mixture followed by recrystallization from an EtOH/DMF mixture. As in the previous case (Mammadova et al., 2023), the reaction does not stop at the formation of an alcohol. This leads to the formation of the aromatic product 2 as a result of proton migration.1.

2. Structural commentary

The mol­ecular conformation of the title compound is consolidated by intra­molecular C—H⋯O hydrogen bonds and intra­molecular O—H⋯O hydrogen bonds, forming an S(6) ring motif (Fig. 2; Table 1; Bernstein et al., 1995). The main mol­ecule of the title compound is planar, with a mean deviation of 0.002 Å from the least-squares plane defined by the 53 atoms (excluding H atoms). The deviations of some atoms from the least-squares plane are 1.141 (2) Å for O1, −1.083 (2) Å for O2, −1.414 (2) Å for O3, −1.224 (2) Å for O4, 0.734 (2) Å for C1, 0.718 (2) Å for C10A, −0.631 (2) Å for C18, −0.841 (2) Å for C19 and 1.585 (2) Å for C20. The five-membered B (N2/C1/C10A/C3A/C3) ring adopts an envelope conformation, as indicated by the puckering parameters (Cremer & Pople, 1975) Q(2) = 0.337 (2) Å, φ(2) = 287.7 (4)°, with the C3A atom −0.212 (2) Å out of the plane defined by the other atoms of the main mol­ecule. The six-membered C (C3A/C4/C4A/C9B/C10/C10A) ring has a half-chair conformation [the puckering parameters are QT = 0.533 (2) Å, θ = 127.0 (2)°, and φ = 152.1 (3)°]. The dihedral angles between the least-squares planes of the rings in the mol­ecule are A/B = 19.28 (12), A/C = 6.72 (11), A/D = 2.10 (11), A/E = 19.19 (11), B/C = 12.57 (11), B/D = 20.45 (12), B/E = 35.55 (11), C/D = 8.10 (10), C/E = 24.24 (10) and D/E = 19.75 (10)°. There is one stereogenic center in the title mol­ecule and the chirality about atom C23 is S in the chosen asymmetric unit. The geometric properties of the title compound are normal and consistent with those of related compounds listed in the Database survey section.

Figure 2.

Figure 2

View of the title mol­ecule. Displacement ellipsoids are drawn at the 50% probability level.

Table 1. Hydrogen-bond geometry (Å, °).

Cg4 and Cg5 are the centroids of the C5A/C6–C9/C9A and C11–C16 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2O⋯O1i 0.99 (5) 2.23 (4) 3.013 (2) 135 (3)
O2—H2O⋯O3i 0.99 (5) 2.32 (4) 3.152 (3) 141 (3)
O4—H4O⋯O6 0.84 (4) 1.74 (4) 2.560 (3) 165 (4)
C3—H3A⋯O1ii 0.99 2.54 3.452 (3) 152
C8—H8⋯O6iii 0.95 2.44 3.344 (3) 159
C16—H16⋯O1 0.95 2.44 2.970 (3) 115
C20—H20B⋯O1 0.98 2.59 3.229 (3) 123
C10A—H10ACg5ii 1.00 2.88 3.865 (2) 169
C22—H22ACg5iv 0.98 2.96 3.401 (3) 109
C22—H22CCg4v 0.98 2.68 3.594 (3) 155

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic.

3. Supra­molecular features and Hirshfeld surface analysis

In the crystal, the mol­ecules are connected by C—H⋯O hydrogen bonds, forming layers parallel to the (101) plane (Table 1; Fig. 3). Furthermore, the mol­ecules form layers parallel to the (10Inline graphic) plane by C—H⋯π inter­actions (Table 1; Fig. 4. No π–π inter­actions were observed.

Figure 3.

Figure 3

A partial view of the mol­ecular packing along the b axis, showing the O—H⋯O and C—H⋯O inter­actions.

Figure 4.

Figure 4

A partial view of the mol­ecular packing along the b axis, showing the C—H⋯π inter­actions.

CrystalExplorer 17.5 (Spackman et al., 2021) was used to construct Hirshfeld surfaces and generate the related two-dimensional fingerprint plots to illustrate the inter­molecular inter­actions for the mol­ecules of the title compound. The dnorm mappings of the title compound were conducted in the range −0.7845 to +1.3229 a.u. Bright-red circles on the dnorm surfaces (Fig. 5) represent H⋯H, O—H⋯O and C—H⋯O inter­action zones (Tables 1 and 2).

Figure 5.

Figure 5

Hirshfeld surface of the title compound mapped with dnorm.

Table 2. Summary of short inter­atomic contacts (Å).

Contact Distance Symmetry operation
O1⋯H2O 2.23 x, 1 + y, z
O1⋯H3A 2.54 2 − x, Inline graphic + y, 1 − z
O4⋯H23A 2.60 x, −1 + y, z
H2O⋯H23B 2.55 1 − x, −Inline graphic + y, 1 − z
H4O⋯O6 1.74 x, y, z
H16⋯H23B 2.58 1 − x, −Inline graphic + y, 1 − z
C7⋯H18B 3.04 x, −1 + y, 1 + z
H8⋯O6 2.44 1 − x, −Inline graphic + y, 2 − z
H7⋯H22B 2.52 1 − x, −Inline graphic + y, 2 − z

Two-dimensional fingerprint plots together with their percentage contributions are shown in Fig. 6. The crystal packing is dominated by H⋯H contacts, representing van der Waals inter­actions (54.7% contribution to the overall surface), followed by O⋯H/H⋯O and C⋯H/H⋯C inter­actions, which contribute to 23.0% and 19.9%, respectively. The other contacts (N⋯H/H⋯N 0.7%, O⋯C/C⋯O 0.6%, C⋯C 0.4%, O⋯O 0.3%, N⋯C/C⋯N 0.2%, O⋯N/N⋯O 0.1% and N⋯N 0.1%) only make a minor contribution to the crystal packing.

Figure 6.

Figure 6

The two-dimensional fingerprint plots for the compound showing (a) all inter­actions, and delineated into (b) H⋯H (54.7%), (c) O⋯H/H⋯O (23.0%) and (d) C⋯H/H⋯C (19.9%) inter­actions. The di and de values are the closest inter­nal and external distances (in Å) from given points on the Hirshfeld surface.

4. Database survey

A search of the Cambridge Structural Database (CSD, version 6.00, update April 2025; Groom et al., 2016) for the octa­hydro-1H-isoindol-1-one unit gave 467 hits. The five related compound CSD reference codes are ANAMUZ (Mariaule et al., 2016), BAFYAL (Zhong et al., 2017), NAMROK (Chou & Wu, 2012), TODKEF (Elliott & Booker-Milburn, 2019) and YOPXIL (Paddon-Row et al., 2009).

ANAMUZ crystallizes in the monoclinic P21/c space group, BAFYAL in the ortho­rhom­bic Pna21 space group, NAMROK in the monoclinic P21/n space group, TODKEF in the monoclinic C2/c space group, and YOPXIL in the monoclinic P21 like the title compound.

In the structure of ANAMUZ, the mol­ecules are linked by C—H⋯O and O—H⋯O inter­molecular hydrogen bonds, forming a three-dimensional network. Weak π–π inter­actions are also observed. In BAFYAL, the mol­ecules are linked by C—H⋯O inter­actions, forming layers parallel to the (002) plane. π–π inter­actions are also present. In NAMROK, pairs of mol­ecules are linked by C—H⋯O inter­actions. π–π and C—H⋯π inter­actions are not observed. In TODKEF, the mol­ecules are linked by inter­molecular C—H⋯O and O—H⋯O hydrogen bonds, forming a three-dimensional network. C—H⋯π inter­actions are also observed. In YOPXIL, the mol­ecules are linked by inter­molecular C—H⋯O hydrogen bonds, forming chains along the b-axis direction. No π–π or C—H⋯π inter­actions are observed.

5. Synthesis and crystallization

A solution of (3aRS,9bRS,10RS,10aSR)-2-(3,5-di­methyl­phen­yl)-10-methyl-1-oxo-2,3,3a,9b,10,10a-hexa­hydro-1H-[1]benzofuro[2,3-f]iso­indole-10-carb­oxy­lic acid 1 (39.0 mg, 0.1 mmol) in 0.5 mL of DMSO was stirred for 30 d in an open flask. The reaction mixture was concentrated, recrystallized from a mixture of EtOH/DMF. The solid was filtered off, washed with Et2O (3 × 1 mL), and air dried. The title compound was obtained as a colorless plates, yield 53%, 21.5 mg; m.p. > 523 K (with decomp.). IR (KBr), ν (cm−1): 3047 (OH), 1744 (CO2), 1683 (N—C=O). 1H NMR (700.2 MHz, DMSO-d6): δ (J, Hz) 12.87 (s, 1H, CO2H), 7.30–7.22 (m, 4H, H Ar), 7.09–7.06 (m, 2H, H Ar), 6.76 (br.s, 1H, H Ar), 5.69 (br.s, 1H, OH), 4.31 (br.s, 1H, H-4) 4.02 (t, J = 8.6, 1H, H-3A), 3.69 (t, J = 8.6, 1H, H-3B), 3.03–2.98 (m, 1H, H-3a), 2.26 (s, 6H, CH3), 2.14 (d, J = 12.6, 1H, H-10a), 0.99 (s, 3H, CH3) ppm. 13C{1H} NMR (176.1 MHz, DMSO-d6): δ 177.3, 172.6, 158.8, 156.9, 140.2, 138.2 (2C), 129.4, 126.4, 125.8, 125.4, 122.8, 117.6 (2C), 110.6, 98.8, 58.9, 50.3, 49.7, 42.9, 35.9, 22.8, 21.7 (2C) ppm. MS (ESI) m/z: [M + H]+ 406. Elemental analysis calculated (%) for C24H23NO5·C3H7NO: C 67.77, H 6.32, N 5.85; found: C 68.04, H 6.49, N 6.01.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. The hydroxyl H atoms were found in the difference Fourier maps [O2—H2O = 0.99 (5) and O4—H4O = 0.84 (4) Å] and refined with Uiso(H) = 1.5Ueq(O). All C-bound H atoms were positioned geometrically (C—H = 0.95 and 1.00 Å) and refined using a riding model with Uiso(H) = 1.2 or 1.5Ueq(C). Owing to poor agreement between observed and calculated intensities, two outliers (\-13 \-5 3 and 14 3 2) were omitted in the final cycles of refinement.

Table 3. Experimental details.

Crystal data
Chemical formula C24H23NO5·C3H7NO
M r 478.53
Crystal system, space group Monoclinic, P21
Temperature (K) 100
a, b, c (Å) 11.88334 (13), 7.80196 (10), 12.71675 (15)
β (°) 95.5166 (10)
V3) 1173.55 (2)
Z 2
Radiation type Cu Kα
μ (mm−1) 0.79
Crystal size (mm) 0.32 × 0.18 × 0.04
 
Data collection
Diffractometer Rigaku XtaLAB Synergy-S, HyPix-6000HE area-detector
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2021)
Tmin, Tmax 0.840, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 16579, 4632, 4504
R int 0.039
(sin θ/λ)max−1) 0.639
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.104, 1.05
No. of reflections 4632
No. of parameters 327
No. of restraints 1
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.29, −0.20
Absolute structure Flack x determined using 1816 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013)
Absolute structure parameter 0.26 (7)

Computer programs: CrysAlis PRO (Rigaku OD, 2021), SHELXT (Sheldrick, 2015a), SHELXL (Sheldrick, 2015b), ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2020).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989025006814/ex2094sup1.cif

e-81-00816-sup1.cif (504.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989025006814/ex2094Isup2.hkl

e-81-00816-Isup2.hkl (368.8KB, hkl)
e-81-00816-Isup3.cml (9.8KB, cml)

Supporting information file. DOI: 10.1107/S2056989025006814/ex2094Isup3.cml

CCDC reference: 2477243

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors’ contributions are as follows. Conceptualization, MA and GMM; synthesis and NMR analysis, EDY and VIS; X-ray analysis, VNK; writing (review and editing of the manuscript) RZN, MA and GMM; funding acquisition KIH and TAJ; supervision, MA and GMM.

supplementary crystallographic information

(3aRS,4RS,10SR,10aSR)-2-(3,5-Dimethylphenyl)-4-hydroxy-10-methyl-1-oxo-2,3,3a,4,10,10a-hexahydro-1H-[1]benzofuro[2,3-f]isoindole-10-carboxylic acid dimethylformamide monosolvate . Crystal data

C24H23NO5·C3H7NO F(000) = 508
Mr = 478.53 Dx = 1.354 Mg m3
Monoclinic, P21 Cu Kα radiation, λ = 1.54184 Å
a = 11.88334 (13) Å Cell parameters from 11292 reflections
b = 7.80196 (10) Å θ = 3.5–79.3°
c = 12.71675 (15) Å µ = 0.79 mm1
β = 95.5166 (10)° T = 100 K
V = 1173.55 (2) Å3 Plate, colourless
Z = 2 0.32 × 0.18 × 0.04 mm

(3aRS,4RS,10SR,10aSR)-2-(3,5-Dimethylphenyl)-4-hydroxy-10-methyl-1-oxo-2,3,3a,4,10,10a-hexahydro-1H-[1]benzofuro[2,3-f]isoindole-10-carboxylic acid dimethylformamide monosolvate . Data collection

Rigaku XtaLAB Synergy-S, HyPix-6000HE area-detector diffractometer 4504 reflections with I > 2σ(I)
Radiation source: micro-focus sealed X-ray tube Rint = 0.039
φ and ω scans θmax = 80.0°, θmin = 3.5°
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2021) h = −15→14
Tmin = 0.840, Tmax = 1.000 k = −9→9
16579 measured reflections l = −16→16
4632 independent reflections

(3aRS,4RS,10SR,10aSR)-2-(3,5-Dimethylphenyl)-4-hydroxy-10-methyl-1-oxo-2,3,3a,4,10,10a-hexahydro-1H-[1]benzofuro[2,3-f]isoindole-10-carboxylic acid dimethylformamide monosolvate . Refinement

Refinement on F2 Hydrogen site location: mixed
Least-squares matrix: full H atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.039 w = 1/[σ2(Fo2) + (0.0664P)2 + 0.2084P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.104 (Δ/σ)max < 0.001
S = 1.05 Δρmax = 0.29 e Å3
4632 reflections Δρmin = −0.20 e Å3
327 parameters Absolute structure: Flack x determined using 1816 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
1 restraint Absolute structure parameter: 0.26 (7)

(3aRS,4RS,10SR,10aSR)-2-(3,5-Dimethylphenyl)-4-hydroxy-10-methyl-1-oxo-2,3,3a,4,10,10a-hexahydro-1H-[1]benzofuro[2,3-f]isoindole-10-carboxylic acid dimethylformamide monosolvate . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

(3aRS,4RS,10SR,10aSR)-2-(3,5-Dimethylphenyl)-4-hydroxy-10-methyl-1-oxo-2,3,3a,4,10,10a-hexahydro-1H-[1]benzofuro[2,3-f]isoindole-10-carboxylic acid dimethylformamide monosolvate . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.88530 (14) 0.6262 (2) 0.57739 (13) 0.0271 (3)
O2 0.71225 (14) −0.0932 (2) 0.53774 (13) 0.0284 (3)
H2O 0.730 (3) −0.211 (6) 0.563 (3) 0.043*
O3 0.64231 (13) 0.5337 (3) 0.60067 (13) 0.0305 (4)
O4 0.59786 (13) 0.4918 (2) 0.76539 (13) 0.0273 (3)
H4O 0.548 (3) 0.562 (6) 0.741 (3) 0.041*
C1 0.86110 (16) 0.4789 (3) 0.55174 (17) 0.0224 (4)
N2 0.85953 (15) 0.4116 (3) 0.45216 (14) 0.0226 (4)
C3 0.83569 (18) 0.2262 (3) 0.44817 (17) 0.0238 (4)
H3A 0.906192 0.158378 0.448925 0.029*
H3B 0.784816 0.195658 0.384677 0.029*
C3A 0.77808 (17) 0.1988 (3) 0.54918 (17) 0.0227 (4)
H3C 0.696408 0.229798 0.534790 0.027*
C4 0.78611 (17) 0.0212 (3) 0.59804 (17) 0.0224 (4)
H4 0.865679 −0.021613 0.601253 0.027*
C4A 0.75155 (16) 0.0443 (3) 0.70768 (16) 0.0222 (4)
O5 0.72355 (13) −0.0995 (2) 0.76165 (13) 0.0249 (3)
C5A 0.69017 (17) −0.0398 (3) 0.85613 (17) 0.0235 (4)
C6 0.65086 (19) −0.1429 (3) 0.93339 (19) 0.0274 (5)
H6 0.646651 −0.264079 0.926576 0.033*
C7 0.6179 (2) −0.0579 (3) 1.02159 (19) 0.0290 (5)
H7 0.590681 −0.122544 1.077164 0.035*
C8 0.6241 (2) 0.1209 (4) 1.03023 (19) 0.0293 (5)
H8 0.600598 0.174756 1.091446 0.035*
C9 0.66374 (19) 0.2215 (3) 0.95132 (18) 0.0266 (4)
H9 0.667526 0.342649 0.957983 0.032*
C9A 0.69807 (17) 0.1389 (3) 0.86142 (17) 0.0227 (4)
C9B 0.73912 (17) 0.1912 (3) 0.76232 (16) 0.0215 (4)
C10 0.76988 (17) 0.3675 (3) 0.72104 (17) 0.0217 (4)
C10A 0.83541 (16) 0.3314 (3) 0.62441 (17) 0.0221 (4)
H10A 0.909918 0.281612 0.652289 0.027*
C11 0.88384 (16) 0.5005 (3) 0.35935 (16) 0.0225 (4)
C12 0.92752 (18) 0.4062 (3) 0.27861 (18) 0.0246 (4)
H12 0.946899 0.289074 0.289792 0.029*
C13 0.94276 (17) 0.4833 (3) 0.18188 (17) 0.0247 (4)
C14 0.91430 (18) 0.6547 (3) 0.16710 (18) 0.0254 (4)
H14 0.922624 0.706973 0.100812 0.030*
C15 0.87377 (18) 0.7520 (3) 0.24734 (18) 0.0248 (4)
C16 0.85946 (17) 0.6739 (3) 0.34459 (17) 0.0231 (4)
H16 0.833172 0.739347 0.400308 0.028*
C17 0.9891 (2) 0.3806 (3) 0.09481 (19) 0.0310 (5)
H17A 1.067808 0.349135 0.116298 0.047*
H17B 0.985651 0.449642 0.030209 0.047*
H17C 0.943878 0.276417 0.081523 0.047*
C18 0.8463 (2) 0.9381 (3) 0.2310 (2) 0.0306 (5)
H18A 0.772745 0.962733 0.256594 0.046*
H18B 0.843368 0.965518 0.155612 0.046*
H18C 0.904707 1.007900 0.270236 0.046*
C19 0.66366 (17) 0.4730 (3) 0.68735 (17) 0.0235 (4)
C20 0.84293 (18) 0.4711 (3) 0.80565 (18) 0.0261 (4)
H20A 0.800078 0.490770 0.866655 0.039*
H20B 0.863104 0.581564 0.775894 0.039*
H20C 0.911934 0.406868 0.828098 0.039*
O6 0.43899 (15) 0.7105 (3) 0.72511 (14) 0.0318 (4)
N1 0.43032 (15) 0.9966 (3) 0.69699 (16) 0.0285 (4)
C21 0.45729 (18) 0.8385 (3) 0.67122 (18) 0.0273 (5)
H21 0.492584 0.821996 0.608054 0.033*
C22 0.3827 (2) 1.0261 (4) 0.7974 (2) 0.0337 (5)
H22A 0.325742 0.938282 0.807445 0.051*
H22B 0.347375 1.139676 0.796540 0.051*
H22C 0.443070 1.020126 0.855480 0.051*
C23 0.4538 (2) 1.1426 (4) 0.6328 (2) 0.0374 (6)
H23A 0.504688 1.221382 0.674296 0.056*
H23B 0.382962 1.201749 0.609764 0.056*
H23C 0.489733 1.103704 0.570820 0.056*

(3aRS,4RS,10SR,10aSR)-2-(3,5-Dimethylphenyl)-4-hydroxy-10-methyl-1-oxo-2,3,3a,4,10,10a-hexahydro-1H-[1]benzofuro[2,3-f]isoindole-10-carboxylic acid dimethylformamide monosolvate . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0306 (7) 0.0246 (8) 0.0275 (8) −0.0040 (6) 0.0093 (6) −0.0023 (6)
O2 0.0342 (8) 0.0240 (8) 0.0278 (7) −0.0030 (7) 0.0073 (6) −0.0033 (7)
O3 0.0278 (7) 0.0373 (9) 0.0275 (8) 0.0075 (7) 0.0080 (6) 0.0036 (7)
O4 0.0257 (7) 0.0295 (8) 0.0284 (8) 0.0054 (6) 0.0117 (6) 0.0017 (7)
C1 0.0180 (8) 0.0254 (10) 0.0247 (9) −0.0014 (7) 0.0067 (7) −0.0023 (8)
N2 0.0234 (8) 0.0222 (9) 0.0235 (8) −0.0025 (7) 0.0089 (6) −0.0006 (7)
C3 0.0259 (10) 0.0221 (11) 0.0247 (9) −0.0005 (8) 0.0090 (7) −0.0014 (8)
C3A 0.0207 (9) 0.0244 (10) 0.0240 (9) 0.0004 (8) 0.0072 (7) −0.0010 (8)
C4 0.0207 (8) 0.0225 (10) 0.0250 (9) 0.0007 (8) 0.0079 (7) −0.0012 (8)
C4A 0.0196 (8) 0.0231 (10) 0.0248 (10) 0.0009 (8) 0.0060 (7) 0.0020 (8)
O5 0.0270 (7) 0.0233 (8) 0.0259 (7) 0.0006 (6) 0.0093 (5) 0.0000 (6)
C5A 0.0213 (9) 0.0273 (11) 0.0228 (10) 0.0018 (8) 0.0064 (7) −0.0008 (8)
C6 0.0269 (10) 0.0260 (11) 0.0301 (11) 0.0006 (8) 0.0073 (8) 0.0014 (9)
C7 0.0309 (11) 0.0319 (13) 0.0253 (10) 0.0015 (9) 0.0086 (8) 0.0053 (9)
C8 0.0316 (10) 0.0338 (13) 0.0240 (10) 0.0025 (9) 0.0106 (8) 0.0008 (9)
C9 0.0296 (10) 0.0263 (11) 0.0250 (10) 0.0023 (9) 0.0090 (8) −0.0006 (9)
C9A 0.0195 (8) 0.0259 (11) 0.0234 (10) 0.0020 (8) 0.0059 (7) 0.0011 (8)
C9B 0.0199 (8) 0.0234 (10) 0.0219 (9) 0.0018 (7) 0.0052 (7) −0.0005 (8)
C10 0.0214 (9) 0.0222 (10) 0.0227 (9) 0.0004 (7) 0.0080 (7) −0.0001 (8)
C10A 0.0189 (8) 0.0238 (10) 0.0244 (9) 0.0000 (8) 0.0061 (7) −0.0014 (8)
C11 0.0192 (8) 0.0279 (11) 0.0212 (9) −0.0020 (8) 0.0060 (7) −0.0001 (8)
C12 0.0233 (9) 0.0242 (11) 0.0271 (10) 0.0010 (8) 0.0076 (7) −0.0008 (9)
C13 0.0219 (9) 0.0285 (11) 0.0245 (10) −0.0013 (8) 0.0070 (7) −0.0004 (9)
C14 0.0237 (9) 0.0286 (12) 0.0246 (10) −0.0031 (8) 0.0065 (7) 0.0003 (8)
C15 0.0229 (9) 0.0243 (11) 0.0275 (10) −0.0026 (8) 0.0043 (7) −0.0004 (9)
C16 0.0207 (9) 0.0248 (11) 0.0247 (9) −0.0013 (7) 0.0073 (7) −0.0021 (8)
C17 0.0372 (12) 0.0322 (13) 0.0253 (10) 0.0051 (10) 0.0119 (8) 0.0004 (9)
C18 0.0354 (11) 0.0266 (12) 0.0307 (11) 0.0019 (9) 0.0079 (8) 0.0002 (9)
C19 0.0220 (9) 0.0227 (10) 0.0267 (10) −0.0020 (8) 0.0073 (7) −0.0020 (8)
C20 0.0267 (10) 0.0274 (11) 0.0250 (10) −0.0017 (8) 0.0059 (7) −0.0023 (9)
O6 0.0307 (8) 0.0297 (9) 0.0369 (8) 0.0032 (7) 0.0135 (6) 0.0011 (7)
N1 0.0236 (8) 0.0310 (11) 0.0305 (9) 0.0014 (8) 0.0015 (7) −0.0003 (8)
C21 0.0250 (10) 0.0289 (12) 0.0287 (10) 0.0006 (9) 0.0059 (8) −0.0017 (9)
C22 0.0318 (11) 0.0363 (14) 0.0328 (11) 0.0102 (10) 0.0023 (8) −0.0057 (10)
C23 0.0305 (11) 0.0341 (13) 0.0463 (14) −0.0025 (10) −0.0030 (10) 0.0077 (11)

(3aRS,4RS,10SR,10aSR)-2-(3,5-Dimethylphenyl)-4-hydroxy-10-methyl-1-oxo-2,3,3a,4,10,10a-hexahydro-1H-[1]benzofuro[2,3-f]isoindole-10-carboxylic acid dimethylformamide monosolvate . Geometric parameters (Å, º)

O1—C1 1.221 (3) C10—C10A 1.543 (3)
O2—C4 1.423 (3) C10—C20 1.545 (3)
O2—H2O 0.99 (4) C10A—H10A 1.0000
O3—C19 1.204 (3) C11—C16 1.393 (3)
O4—C19 1.329 (3) C11—C12 1.402 (3)
O4—H4O 0.85 (4) C12—C13 1.397 (3)
C1—N2 1.369 (3) C12—H12 0.9500
C1—C10A 1.525 (3) C13—C14 1.388 (4)
N2—C11 1.422 (3) C13—C17 1.513 (3)
N2—C3 1.475 (3) C14—C15 1.394 (3)
C3—C3A 1.528 (3) C14—H14 0.9500
C3—H3A 0.9900 C15—C16 1.404 (3)
C3—H3B 0.9900 C15—C18 1.498 (3)
C3A—C4 1.517 (3) C16—H16 0.9500
C3A—C10A 1.525 (3) C17—H17A 0.9800
C3A—H3C 1.0000 C17—H17B 0.9800
C4—C4A 1.502 (3) C17—H17C 0.9800
C4—H4 1.0000 C18—H18A 0.9800
C4A—C9B 1.356 (3) C18—H18B 0.9800
C4A—O5 1.373 (3) C18—H18C 0.9800
O5—C5A 1.382 (3) C20—H20A 0.9800
C5A—C6 1.385 (3) C20—H20B 0.9800
C5A—C9A 1.398 (3) C20—H20C 0.9800
C6—C7 1.391 (3) O6—C21 1.242 (3)
C6—H6 0.9500 N1—C21 1.324 (3)
C7—C8 1.401 (4) N1—C23 1.444 (4)
C7—H7 0.9500 N1—C22 1.464 (3)
C8—C9 1.391 (3) C21—H21 0.9500
C8—H8 0.9500 C22—H22A 0.9800
C9—C9A 1.407 (3) C22—H22B 0.9800
C9—H9 0.9500 C22—H22C 0.9800
C9A—C9B 1.453 (3) C23—H23A 0.9800
C9B—C10 1.529 (3) C23—H23B 0.9800
C10—C19 1.533 (3) C23—H23C 0.9800
C4—O2—H2O 108 (2) C3A—C10A—H10A 106.6
C19—O4—H4O 104 (3) C1—C10A—H10A 106.6
O1—C1—N2 126.1 (2) C10—C10A—H10A 106.6
O1—C1—C10A 127.2 (2) C16—C11—C12 119.8 (2)
N2—C1—C10A 106.56 (19) C16—C11—N2 121.94 (19)
C1—N2—C11 126.5 (2) C12—C11—N2 118.1 (2)
C1—N2—C3 113.19 (18) C13—C12—C11 120.5 (2)
C11—N2—C3 120.22 (18) C13—C12—H12 119.7
N2—C3—C3A 102.03 (17) C11—C12—H12 119.7
N2—C3—H3A 111.4 C14—C13—C12 118.9 (2)
C3A—C3—H3A 111.4 C14—C13—C17 120.8 (2)
N2—C3—H3B 111.4 C12—C13—C17 120.2 (2)
C3A—C3—H3B 111.4 C13—C14—C15 121.5 (2)
H3A—C3—H3B 109.2 C13—C14—H14 119.3
C4—C3A—C10A 110.85 (18) C15—C14—H14 119.3
C4—C3A—C3 117.16 (18) C14—C15—C16 119.2 (2)
C10A—C3A—C3 102.90 (17) C14—C15—C18 120.8 (2)
C4—C3A—H3C 108.5 C16—C15—C18 119.9 (2)
C10A—C3A—H3C 108.5 C11—C16—C15 119.9 (2)
C3—C3A—H3C 108.5 C11—C16—H16 120.0
O2—C4—C4A 111.45 (17) C15—C16—H16 120.0
O2—C4—C3A 109.92 (17) C13—C17—H17A 109.5
C4A—C4—C3A 105.01 (18) C13—C17—H17B 109.5
O2—C4—H4 110.1 H17A—C17—H17B 109.5
C4A—C4—H4 110.1 C13—C17—H17C 109.5
C3A—C4—H4 110.1 H17A—C17—H17C 109.5
C9B—C4A—O5 113.02 (18) H17B—C17—H17C 109.5
C9B—C4A—C4 129.1 (2) C15—C18—H18A 109.5
O5—C4A—C4 117.87 (19) C15—C18—H18B 109.5
C4A—O5—C5A 105.24 (17) H18A—C18—H18B 109.5
O5—C5A—C6 124.4 (2) C15—C18—H18C 109.5
O5—C5A—C9A 110.75 (19) H18A—C18—H18C 109.5
C6—C5A—C9A 124.8 (2) H18B—C18—H18C 109.5
C5A—C6—C7 115.8 (2) O3—C19—O4 123.6 (2)
C5A—C6—H6 122.1 O3—C19—C10 124.22 (19)
C7—C6—H6 122.1 O4—C19—C10 112.22 (18)
C6—C7—C8 121.4 (2) C10—C20—H20A 109.5
C6—C7—H7 119.3 C10—C20—H20B 109.5
C8—C7—H7 119.3 H20A—C20—H20B 109.5
C9—C8—C7 121.6 (2) C10—C20—H20C 109.5
C9—C8—H8 119.2 H20A—C20—H20C 109.5
C7—C8—H8 119.2 H20B—C20—H20C 109.5
C8—C9—C9A 118.2 (2) C21—N1—C23 122.0 (2)
C8—C9—H9 120.9 C21—N1—C22 119.1 (2)
C9A—C9—H9 120.9 C23—N1—C22 118.7 (2)
C5A—C9A—C9 118.2 (2) O6—C21—N1 123.6 (2)
C5A—C9A—C9B 105.37 (19) O6—C21—H21 118.2
C9—C9A—C9B 136.4 (2) N1—C21—H21 118.2
C4A—C9B—C9A 105.6 (2) N1—C22—H22A 109.5
C4A—C9B—C10 122.89 (18) N1—C22—H22B 109.5
C9A—C9B—C10 131.4 (2) H22A—C22—H22B 109.5
C9B—C10—C19 111.18 (16) N1—C22—H22C 109.5
C9B—C10—C10A 105.37 (18) H22A—C22—H22C 109.5
C19—C10—C10A 109.91 (17) H22B—C22—H22C 109.5
C9B—C10—C20 111.64 (18) N1—C23—H23A 109.5
C19—C10—C20 107.81 (18) N1—C23—H23B 109.5
C10A—C10—C20 110.95 (17) H23A—C23—H23B 109.5
C3A—C10A—C1 103.62 (17) N1—C23—H23C 109.5
C3A—C10A—C10 113.22 (17) H23A—C23—H23C 109.5
C1—C10A—C10 119.38 (19) H23B—C23—H23C 109.5
O1—C1—N2—C11 −1.1 (3) C9A—C9B—C10—C10A 166.1 (2)
C10A—C1—N2—C11 −177.07 (19) C4A—C9B—C10—C20 −131.6 (2)
O1—C1—N2—C3 175.4 (2) C9A—C9B—C10—C20 45.5 (3)
C10A—C1—N2—C3 −0.6 (2) C4—C3A—C10A—C1 158.47 (16)
C1—N2—C3—C3A 21.1 (2) C3—C3A—C10A—C1 32.4 (2)
C11—N2—C3—C3A −162.14 (17) C4—C3A—C10A—C10 −70.7 (2)
N2—C3—C3A—C4 −154.02 (18) C3—C3A—C10A—C10 163.22 (18)
N2—C3—C3A—C10A −32.2 (2) O1—C1—C10A—C3A 163.7 (2)
C10A—C3A—C4—O2 167.45 (16) N2—C1—C10A—C3A −20.4 (2)
C3—C3A—C4—O2 −74.9 (2) O1—C1—C10A—C10 36.7 (3)
C10A—C3A—C4—C4A 47.5 (2) N2—C1—C10A—C10 −147.41 (18)
C3—C3A—C4—C4A 165.10 (17) C9B—C10—C10A—C3A 46.8 (2)
O2—C4—C4A—C9B −132.0 (2) C19—C10—C10A—C3A −73.1 (2)
C3A—C4—C4A—C9B −13.1 (3) C20—C10—C10A—C3A 167.77 (19)
O2—C4—C4A—O5 45.1 (2) C9B—C10—C10A—C1 169.18 (17)
C3A—C4—C4A—O5 164.06 (17) C19—C10—C10A—C1 49.3 (2)
C9B—C4A—O5—C5A 0.6 (2) C20—C10—C10A—C1 −69.8 (2)
C4—C4A—O5—C5A −176.98 (17) C1—N2—C11—C16 −32.0 (3)
C4A—O5—C5A—C6 177.6 (2) C3—N2—C11—C16 151.7 (2)
C4A—O5—C5A—C9A −0.5 (2) C1—N2—C11—C12 151.8 (2)
O5—C5A—C6—C7 −178.00 (19) C3—N2—C11—C12 −24.5 (3)
C9A—C5A—C6—C7 −0.2 (3) C16—C11—C12—C13 −2.5 (3)
C5A—C6—C7—C8 0.3 (3) N2—C11—C12—C13 173.85 (19)
C6—C7—C8—C9 −0.3 (4) C11—C12—C13—C14 0.2 (3)
C7—C8—C9—C9A 0.0 (4) C11—C12—C13—C17 −179.54 (19)
O5—C5A—C9A—C9 178.00 (17) C12—C13—C14—C15 1.6 (3)
C6—C5A—C9A—C9 −0.1 (3) C17—C13—C14—C15 −178.6 (2)
O5—C5A—C9A—C9B 0.2 (2) C13—C14—C15—C16 −1.2 (3)
C6—C5A—C9A—C9B −177.9 (2) C13—C14—C15—C18 178.4 (2)
C8—C9—C9A—C5A 0.2 (3) C12—C11—C16—C15 2.9 (3)
C8—C9—C9A—C9B 177.2 (2) N2—C11—C16—C15 −173.26 (19)
O5—C4A—C9B—C9A −0.5 (2) C14—C15—C16—C11 −1.1 (3)
C4—C4A—C9B—C9A 176.74 (19) C18—C15—C16—C11 179.3 (2)
O5—C4A—C9B—C10 177.23 (18) C9B—C10—C19—O3 −123.8 (2)
C4—C4A—C9B—C10 −5.5 (3) C10A—C10—C19—O3 −7.5 (3)
C5A—C9A—C9B—C4A 0.2 (2) C20—C10—C19—O3 113.6 (2)
C9—C9A—C9B—C4A −177.0 (2) C9B—C10—C19—O4 56.9 (2)
C5A—C9A—C9B—C10 −177.3 (2) C10A—C10—C19—O4 173.20 (19)
C9—C9A—C9B—C10 5.5 (4) C20—C10—C19—O4 −65.7 (2)
C4A—C9B—C10—C19 108.0 (2) C23—N1—C21—O6 179.5 (2)
C9A—C9B—C10—C19 −74.9 (3) C22—N1—C21—O6 4.0 (3)
C4A—C9B—C10—C10A −11.0 (3)

(3aRS,4RS,10SR,10aSR)-2-(3,5-Dimethylphenyl)-4-hydroxy-10-methyl-1-oxo-2,3,3a,4,10,10a-hexahydro-1H-[1]benzofuro[2,3-f]isoindole-10-carboxylic acid dimethylformamide monosolvate . Hydrogen-bond geometry (Å, º)

Cg4 and Cg5 are the centroids of the C5A/C6–C9/C9A and C11–C16 rings, respectively.

D—H···A D—H H···A D···A D—H···A
O2—H2O···O1i 0.99 (5) 2.23 (4) 3.013 (2) 135 (3)
O2—H2O···O3i 0.99 (5) 2.32 (4) 3.152 (3) 141 (3)
O4—H4O···O6 0.84 (4) 1.74 (4) 2.560 (3) 165 (4)
C3—H3A···O1ii 0.99 2.54 3.452 (3) 152
C8—H8···O6iii 0.95 2.44 3.344 (3) 159
C16—H16···O1 0.95 2.44 2.970 (3) 115
C20—H20B···O1 0.98 2.59 3.229 (3) 123
C10A—H10A···Cg5ii 1.00 2.88 3.865 (2) 169
C22—H22A···Cg5iv 0.98 2.96 3.401 (3) 109
C22—H22C···Cg4v 0.98 2.68 3.594 (3) 155

Symmetry codes: (i) x, y−1, z; (ii) −x+2, y−1/2, −z+1; (iii) −x+1, y−1/2, −z+2; (iv) −x+1, y+1/2, −z+1; (v) x, y+1, z.

Funding Statement

This publication was supported by the Russian Science Foundation (project No. 24–23–00212), see https://rscf.ru/project/24–23–00212/.

References

  1. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  2. Chou, S. P. & Wu, C.-J. J. (2012). Tetrahedron68, 1185–1191.
  3. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  4. Elliott, L. D. & Booker-Milburn, K. I. (2019). Org. Lett.21, 1463–1466. [DOI] [PubMed]
  5. Epstein, W. W. & Sweat, F. W. (1967). Chem. Rev.67, 247–260.
  6. Farrugia, L. J. (2012). J. Appl. Cryst.45, 849–854.
  7. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  8. Horak, Y. I., Lytvyn, R. Z., Laba, Y. V., Homza, Y. V., Zaytsev, V. P., Nadirova, M. A., Nikanorova, T. V., Zubkov, F. I., Varlamov, A. V. & Obushak, M. D. (2017). Tetrahedron Lett.58, 4103–4106.
  9. Krishna, G., Grudinin, D. G., Nikitina, E. V. & Zubkov, F. I. (2022). Synthesis54, 797–863.
  10. Mammadova, G. Z., Yakovleva, E. D., Erokhin, P. P., Grigoriev, M. S., Atioğlu, Z., Azizova, A. N., Akkurt, M. & Bhattarai, A. (2023). Acta Cryst. E79, 1127–1131. [DOI] [PMC free article] [PubMed]
  11. Mariaule, G., De Cesco, S., Airaghi, F., Kurian, J., Schiavini, P., Rocheleau, S., Huskić, I., Auclair, K., Mittermaier, A. & Moitessier, N. (2016). J. Med. Chem.59, 4221–4234. [DOI] [PubMed]
  12. Nadirova, M. A., Laba, Y. V., Zaytsev, V. P., Sokolova, J. S., Pokazeev, K. M., Anokhina, V. A., Khrustalev, V. N., Horak, Y. I., Lytvyn, R. Z., Siczek, M., Kinzhybalo, V., Zubavichus, Y. V., Kuznetsov, M. L., Obushak, M. D. & Zubkov, F. I. (2020). Synthesis52, 2196–2223.
  13. Paddon-Row, M. N., Longshaw, A. I., Willis, A. C. & Sherburn, M. S. (2009). Chem. Asian J.4, 126–134. [DOI] [PubMed]
  14. Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. [DOI] [PMC free article] [PubMed]
  15. Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
  16. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  17. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  18. Shelukho, E. R., Yakovleva, E. D., Logvinenko, N. A., Khrustalev, V. N., Novikov, R. A., Zubkov, F. I. & Zaytsev, V. P. (2025). Synlett36, 1358–1362.
  19. Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst.54, 1006–1011. [DOI] [PMC free article] [PubMed]
  20. Spek, A. L. (2020). Acta Cryst. E76, 1–11. [DOI] [PMC free article] [PubMed]
  21. Yakovleva, E. D., Shelukho, E. R., Nadirova, M. A., Erokhin, P. P., Simakova, D. N., Khrustalev, V. N., Grigoriev, M. S., Novikov, A. P., Romanycheva, A. A., Shetnev, A. A., Bychkova, O. P., Trenin, A. S., Zubkov, F. I. & Zaytsev, V. P. (2024). Org. Biomol. Chem.22, 2643–2653. [DOI] [PubMed]
  22. Zaytsev, V. P., Lovtsevich, L. V., Pokazeev, K. M., Sorokina, E. A., Dorovatovskii, P. V., Khrustalev, V. N., Romanycheva, A. A., Shetnev, A. A., Volobueva, A. S., Esaulkova, I. L., Slita, A. V., Zarubaev, V. V. & Zubkov, F. I. (2023). Tetrahedron131, 133205.
  23. Zaytsev, V. P., Simakova, D. N., Maslova, V. S., Ilyushenkova, V. V., Novikov, R. A., Grigoriev, M. S., Danilov, R. D., Litvinov, R., Kolesnik, I. A., Potkin, V. I. & Zubkov, F. I. (2025). Org. Biomol. Chem.23, 3925–3936. [DOI] [PubMed]
  24. Zhong, C.-Z., Tung, P.-T., Chao, T.-H. & Yeh, M. P. (2017). J. Org. Chem.82, 481–501. [DOI] [PubMed]
  25. Zubkov, F. I., Zaytsev, V. P., Mertsalov, D. F., Nikitina, E. V., Horak, Y. I., Lytvyn, R. Z., Homza, Y. V., Obushak, M. D., Dorovatovskii, P. V., Khrustalev, V. N. & Varlamov, A. V. (2016). Tetrahedron72, 2239–2253.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989025006814/ex2094sup1.cif

e-81-00816-sup1.cif (504.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989025006814/ex2094Isup2.hkl

e-81-00816-Isup2.hkl (368.8KB, hkl)
e-81-00816-Isup3.cml (9.8KB, cml)

Supporting information file. DOI: 10.1107/S2056989025006814/ex2094Isup3.cml

CCDC reference: 2477243

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES