Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 2002 Dec;110(Suppl 6):947–956. doi: 10.1289/ehp.02110s6947

Gene induction studies and toxicity of chemical mixtures.

M M Mumtaz 1, D B Tully 1, H A El-Masri 1, C T De Rosa 1
PMCID: PMC1241277  PMID: 12634124

Abstract

As part of its mixtures program, the Agency for Toxic Substances and Disease Registry (ATSDR) supports in vitro and limited in vivo toxicity testing to further our understanding of the toxicity and health effects of chemical mixtures. There are increasing concerns that environmental chemicals adversely affect the health of humans and wildlife. These concerns have been augmented by the realization that exposure to chemicals often occurs to mixtures of these chemicals that may exhibit complex synergistic or antagonistic interactions. To address such concerns, we have conducted two studies with techniques that are being used increasingly in experimental toxicology. In the first study, six organochlorine pesticides (4,4 -DDT, 4,4 -DDD, 4,4 -DDE, aldrin, dieldrin, or endrin) were selected from the ATSDR Comprehensive Environmental Response, Compensation and Liability Act of 1980 (or Superfund) priority list and tested for their ability to modulate transcriptional activation of an estrogen-responsive reporter gene in transfected HeLa cells. In these assays, HeLa cells cotransfected with an expression vector encoding estrogen receptor and an estrogen-responsive chloramphenicol acetyltransferase (CAT) reporter plasmid were dosed with and without selected environmental chemicals either individually or in defined combinations. Estradiol consistently elicited 10- to 23-fold dose-dependent inductions in this assay. By contrast, all six of the organochlorine pesticides showed no detectable dose-related response when tested either individually or in binary combinations. Thus, these chemicals as binary mixtures do not exhibit any additional estrogenicity at the levels tested in these assays. In the second study, arsenic [As(V)], cadmium [Cd(II)], chromium [Cr(III, VI)], and lead [Pb(II)] were tested in a commercially developed assay system, CAT-Tox (L), to identify metal-responsive promoters and to determine whether the pattern of gene expression changed with a mixture of these metals. This assay employs a battery of recombinant HepG2 cell lines to test the transcriptional activation capacity of xenobiotics in any of 13 different signal-transduction pathways. Singly, As(V), Cd(II), Cr(III, VI), and Pb(II) produced complex induction profiles in these assays. However, no evidence of synergistic activity was detected with a mixture of Cd(II), Cr(III), and Pb(II). These results have shown metal activation of gene expression through several previously unreported signal-transduction pathways and thus suggest new directions for future studies into their biochemical mechanisms of toxicity. In conclusion, the (italic)in vitro(/italic) methods used in these studies provide insights into complex interactions that occur in cellular systems and could be used to identify biomarkers of exposure to other environmental chemical mixtures.

Full Text

The Full Text of this article is available as a PDF (318.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allenby G., Bocquel M. T., Saunders M., Kazmer S., Speck J., Rosenberger M., Lovey A., Kastner P., Grippo J. F., Chambon P. Retinoic acid receptors and retinoid X receptors: interactions with endogenous retinoic acids. Proc Natl Acad Sci U S A. 1993 Jan 1;90(1):30–34. doi: 10.1073/pnas.90.1.30. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Anderson R. A. Chromium as an essential nutrient for humans. Regul Toxicol Pharmacol. 1997 Aug;26(1 Pt 2):S35–S41. doi: 10.1006/rtph.1997.1136. [DOI] [PubMed] [Google Scholar]
  3. Angel P., Karin M. The role of Jun, Fos and the AP-1 complex in cell-proliferation and transformation. Biochim Biophys Acta. 1991 Dec 10;1072(2-3):129–157. doi: 10.1016/0304-419x(91)90011-9. [DOI] [PubMed] [Google Scholar]
  4. Arnold S. F., Collins B. M., Robinson M. K., Guillette L. J., Jr, McLachlan J. A. Differential interaction of natural and synthetic estrogens with extracellular binding proteins in a yeast estrogen screen. Steroids. 1996 Nov;61(11):642–646. doi: 10.1016/s0039-128x(96)00183-3. [DOI] [PubMed] [Google Scholar]
  5. Baeuerle P. A. The inducible transcription activator NF-kappa B: regulation by distinct protein subunits. Biochim Biophys Acta. 1991 Apr 16;1072(1):63–80. doi: 10.1016/0304-419x(91)90007-8. [DOI] [PubMed] [Google Scholar]
  6. Beyersmann D., Hechtenberg S. Cadmium, gene regulation, and cellular signalling in mammalian cells. Toxicol Appl Pharmacol. 1997 Jun;144(2):247–261. doi: 10.1006/taap.1997.8125. [DOI] [PubMed] [Google Scholar]
  7. Borrelli E., Montmayeur J. P., Foulkes N. S., Sassone-Corsi P. Signal transduction and gene control: the cAMP pathway. Crit Rev Oncog. 1992;3(4):321–338. [PubMed] [Google Scholar]
  8. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  9. Chatterjee S., Ray A., Bagchi P., Deb C. Estrogenic effects of aldrin and quinalphos in rats. Bull Environ Contam Toxicol. 1992 Jan;48(1):125–130. doi: 10.1007/BF00197494. [DOI] [PubMed] [Google Scholar]
  10. Chen C. W., Hurd C., Vorojeikina D. P., Arnold S. F., Notides A. C. Transcriptional activation of the human estrogen receptor by DDT isomers and metabolites in yeast and MCF-7 cells. Biochem Pharmacol. 1997 Apr 25;53(8):1161–1172. doi: 10.1016/s0006-2952(97)00097-x. [DOI] [PubMed] [Google Scholar]
  11. Cherian M. G., Howell S. B., Imura N., Klaassen C. D., Koropatnick J., Lazo J. S., Waalkes M. P. Role of metallothionein in carcinogenesis. Toxicol Appl Pharmacol. 1994 May;126(1):1–5. doi: 10.1006/taap.1994.1083. [DOI] [PubMed] [Google Scholar]
  12. Chin T. A., Templeton D. M. Protective elevations of glutathione and metallothionein in cadmium-exposed mesangial cells. Toxicology. 1993 Jan 29;77(1-2):145–156. doi: 10.1016/0300-483x(93)90145-i. [DOI] [PubMed] [Google Scholar]
  13. Coogan T. P., Bare R. M., Bjornson E. J., Waalkes M. P. Enhanced metallothionein gene expression is associated with protection from cadmium-induced genotoxicity in cultured rat liver cells. J Toxicol Environ Health. 1994 Feb;41(2):233–245. doi: 10.1080/15287399409531839. [DOI] [PubMed] [Google Scholar]
  14. Danzo B. J. Environmental xenobiotics may disrupt normal endocrine function by interfering with the binding of physiological ligands to steroid receptors and binding proteins. Environ Health Perspect. 1997 Mar;105(3):294–301. doi: 10.1289/ehp.97105294. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Dubrovskaya V. A., Wetterhahn K. E. Effects of Cr(VI) on the expression of the oxidative stress genes in human lung cells. Carcinogenesis. 1998 Aug;19(8):1401–1407. doi: 10.1093/carcin/19.8.1401. [DOI] [PubMed] [Google Scholar]
  16. Epner D. E., Herschman H. R. Heavy metals induce expression of the TPA-inducible sequence (TIS) genes. J Cell Physiol. 1991 Jul;148(1):68–74. doi: 10.1002/jcp.1041480109. [DOI] [PubMed] [Google Scholar]
  17. Fay R. M., Mumtaz M. M. Development of a priority list of chemical mixtures occurring at 1188 hazardous waste sites, using the HazDat database. Food Chem Toxicol. 1996 Nov-Dec;34(11-12):1163–1165. doi: 10.1016/s0278-6915(97)00090-2. [DOI] [PubMed] [Google Scholar]
  18. Fornace A. J., Jr, Nebert D. W., Hollander M. C., Luethy J. D., Papathanasiou M., Fargnoli J., Holbrook N. J. Mammalian genes coordinately regulated by growth arrest signals and DNA-damaging agents. Mol Cell Biol. 1989 Oct;9(10):4196–4203. doi: 10.1128/mcb.9.10.4196. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Fujii-Kuriyama Y., Imataka H., Sogawa K., Yasumoto K., Kikuchi Y. Regulation of CYP1A1 expression. FASEB J. 1992 Jan 6;6(2):706–710. doi: 10.1096/fasebj.6.2.1537460. [DOI] [PubMed] [Google Scholar]
  20. Gellert R. J. Kepone, mirex, dieldrin, and aldrin: estrogenic activity and the induction of persistent vaginal estrus and anovulation in rats following neonatal treatment. Environ Res. 1978 Jul;16(1-3):131–138. doi: 10.1016/0013-9351(78)90150-0. [DOI] [PubMed] [Google Scholar]
  21. Hansen H., De Rosa C. T., Pohl H., Fay M., Mumtaz M. M. Public health challenges posed by chemical mixtures. Environ Health Perspect. 1998 Dec;106 (Suppl 6):1271–1280. doi: 10.1289/ehp.98106s61271. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Hartl F. U., Martin J., Neupert W. Protein folding in the cell: the role of molecular chaperones Hsp70 and Hsp60. Annu Rev Biophys Biomol Struct. 1992;21:293–322. doi: 10.1146/annurev.bb.21.060192.001453. [DOI] [PubMed] [Google Scholar]
  23. Hatcher E. L., Chen Y., Kang Y. J. Cadmium resistance in A549 cells correlates with elevated glutathione content but not antioxidant enzymatic activities. Free Radic Biol Med. 1995 Dec;19(6):805–812. doi: 10.1016/0891-5849(95)00099-j. [DOI] [PubMed] [Google Scholar]
  24. Hollander M. C., Alamo I., Jackman J., Wang M. G., McBride O. W., Fornace A. J., Jr Analysis of the mammalian gadd45 gene and its response to DNA damage. J Biol Chem. 1993 Nov 15;268(32):24385–24393. [PubMed] [Google Scholar]
  25. Hollander M. C., Fornace A. J., Jr Induction of fos RNA by DNA-damaging agents. Cancer Res. 1989 Apr 1;49(7):1687–1692. [PubMed] [Google Scholar]
  26. Hunt C., Morimoto R. I. Conserved features of eukaryotic hsp70 genes revealed by comparison with the nucleotide sequence of human hsp70. Proc Natl Acad Sci U S A. 1985 Oct;82(19):6455–6459. doi: 10.1073/pnas.82.19.6455. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Kastan M. B., Onyekwere O., Sidransky D., Vogelstein B., Craig R. W. Participation of p53 protein in the cellular response to DNA damage. Cancer Res. 1991 Dec 1;51(23 Pt 1):6304–6311. [PubMed] [Google Scholar]
  28. Klaassen C. D., Liu J. Induction of metallothionein as an adaptive mechanism affecting the magnitude and progression of toxicological injury. Environ Health Perspect. 1998 Feb;106 (Suppl 1):297–300. doi: 10.1289/ehp.98106s1297. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Luethy J. D., Holbrook N. J. Activation of the gadd153 promoter by genotoxic agents: a rapid and specific response to DNA damage. Cancer Res. 1992 Jan 1;52(1):5–10. [PubMed] [Google Scholar]
  30. Matsuoka M., Call K. M. Cadmium-induced expression of immediate early genes in LLC-PK1 cells. Kidney Int. 1995 Aug;48(2):383–389. doi: 10.1038/ki.1995.306. [DOI] [PubMed] [Google Scholar]
  31. Mitani K., Fujita H., Sassa S., Kappas A. Activation of heme oxygenase and heat shock protein 70 genes by stress in human hepatoma cells. Biochem Biophys Res Commun. 1990 Feb 14;166(3):1429–1434. doi: 10.1016/0006-291x(90)91026-o. [DOI] [PubMed] [Google Scholar]
  32. Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983 Dec 16;65(1-2):55–63. doi: 10.1016/0022-1759(83)90303-4. [DOI] [PubMed] [Google Scholar]
  33. Mosser D. D., Duchaine J., Massie B. The DNA-binding activity of the human heat shock transcription factor is regulated in vivo by hsp70. Mol Cell Biol. 1993 Sep;13(9):5427–5438. doi: 10.1128/mcb.13.9.5427. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Mosser D. D., Theodorakis N. G., Morimoto R. I. Coordinate changes in heat shock element-binding activity and HSP70 gene transcription rates in human cells. Mol Cell Biol. 1988 Nov;8(11):4736–4744. doi: 10.1128/mcb.8.11.4736. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Nelsen B., Hellman L., Sen R. The NF-kappa B-binding site mediates phorbol ester-inducible transcription in nonlymphoid cells. Mol Cell Biol. 1988 Aug;8(8):3526–3531. doi: 10.1128/mcb.8.8.3526. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Neuhold L. A., Shirayoshi Y., Ozato K., Jones J. E., Nebert D. W. Regulation of mouse CYP1A1 gene expression by dioxin: requirement of two cis-acting elements during induction. Mol Cell Biol. 1989 Jun;9(6):2378–2386. doi: 10.1128/mcb.9.6.2378. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Park J. S., Luethy J. D., Wang M. G., Fargnoli J., Fornace A. J., Jr, McBride O. W., Holbrook N. J. Isolation, characterization and chromosomal localization of the human GADD153 gene. Gene. 1992 Jul 15;116(2):259–267. doi: 10.1016/0378-1119(92)90523-r. [DOI] [PubMed] [Google Scholar]
  38. Pennie W. D., Tugwood J. D., Oliver G. J., Kimber I. The principles and practice of toxigenomics: applications and opportunities. Toxicol Sci. 2000 Apr;54(2):277–283. doi: 10.1093/toxsci/54.2.277. [DOI] [PubMed] [Google Scholar]
  39. Proceedings of the 1993 Decision Support Methodologies International Workshop, Agency for Toxic Substances and Disease Registry. Atlanta, Georgia, USA, 18-20 October 1993. Toxicol Lett. 1995 Sep;79(1-3):1–316. [PubMed] [Google Scholar]
  40. Ramamoorthy K., Wang F., Chen I. C., Norris J. D., McDonnell D. P., Leonard L. S., Gaido K. W., Bocchinfuso W. P., Korach K. S., Safe S. Estrogenic activity of a dieldrin/toxaphene mixture in the mouse uterus, MCF-7 human breast cancer cells, and yeast-based estrogen receptor assays: no apparent synergism. Endocrinology. 1997 Apr;138(4):1520–1527. doi: 10.1210/endo.138.4.5056. [DOI] [PubMed] [Google Scholar]
  41. Ratnasabapathy R., Tom M., Post C. Modulation of the hepatic expression of the estrogen-regulated mRNA stabilizing factor by estrogenic and antiestrogenic nonsteroidal xenobiotics. Biochem Pharmacol. 1997 May 15;53(10):1425–1434. doi: 10.1016/s0006-2952(97)00084-1. [DOI] [PubMed] [Google Scholar]
  42. Richards R. I., Heguy A., Karin M. Structural and functional analysis of the human metallothionein-IA gene: differential induction by metal ions and glucocorticoids. Cell. 1984 May;37(1):263–272. doi: 10.1016/0092-8674(84)90322-2. [DOI] [PubMed] [Google Scholar]
  43. Rushmore T. H., King R. G., Paulson K. E., Pickett C. B. Regulation of glutathione S-transferase Ya subunit gene expression: identification of a unique xenobiotic-responsive element controlling inducible expression by planar aromatic compounds. Proc Natl Acad Sci U S A. 1990 May;87(10):3826–3830. doi: 10.1073/pnas.87.10.3826. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Rushmore T. H., Pickett C. B. Glutathione S-transferases, structure, regulation, and therapeutic implications. J Biol Chem. 1993 Jun 5;268(16):11475–11478. [PubMed] [Google Scholar]
  45. Rushmore T. H., Pickett C. B. Xenobiotic responsive elements controlling inducible expression by planar aromatic compounds and phenolic antioxidants. Methods Enzymol. 1991;206:409–420. doi: 10.1016/0076-6879(91)06110-o. [DOI] [PubMed] [Google Scholar]
  46. Sassone-Corsi P., Sisson J. C., Verma I. M. Transcriptional autoregulation of the proto-oncogene fos. Nature. 1988 Jul 28;334(6180):314–319. doi: 10.1038/334314a0. [DOI] [PubMed] [Google Scholar]
  47. Shelby M. D., Newbold R. R., Tully D. B., Chae K., Davis V. L. Assessing environmental chemicals for estrogenicity using a combination of in vitro and in vivo assays. Environ Health Perspect. 1996 Dec;104(12):1296–1300. doi: 10.1289/ehp.961041296. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Shelton K. R., Todd J. M., Egle P. M. The induction of stress-related proteins by lead. J Biol Chem. 1986 Feb 5;261(4):1935–1940. [PubMed] [Google Scholar]
  49. Soto A. M., Sonnenschein C., Chung K. L., Fernandez M. F., Olea N., Serrano F. O. The E-SCREEN assay as a tool to identify estrogens: an update on estrogenic environmental pollutants. Environ Health Perspect. 1995 Oct;103 (Suppl 7):113–122. doi: 10.1289/ehp.95103s7113. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Stancel G. M., Ireland J. S., Mukku V. R., Robison A. K. The estrogenic activity of DDT: in vivo and in vitro induction of a specific estrogen inducible uterine protein by o,p'-DDT. Life Sci. 1980 Sep 22;27(12):1111–1117. doi: 10.1016/0024-3205(80)90037-5. [DOI] [PubMed] [Google Scholar]
  51. Tandon S. K., Khandelwal S., Jain V. K., Mathur N. Influence of dietary iron deficiency on acute metal intoxication. Biometals. 1993 Summer;6(2):133–138. doi: 10.1007/BF00140115. [DOI] [PubMed] [Google Scholar]
  52. Tang N., Enger M. D. Cd(2+)-induced c-myc mRNA accumulation in NRK-49F cells is blocked by the protein kinase inhibitor H7 but not by HA1004, indicating that protein kinase C is a mediator of the response. Toxicology. 1993 Jul 28;81(2):155–164. doi: 10.1016/0300-483x(93)90007-f. [DOI] [PubMed] [Google Scholar]
  53. Todd M. D., Lee M. J., Williams J. L., Nalezny J. M., Gee P., Benjamin M. B., Farr S. B. The CAT-Tox (L) assay: a sensitive and specific measure of stress-induced transcription in transformed human liver cells. Fundam Appl Toxicol. 1995 Nov;28(1):118–128. doi: 10.1006/faat.1995.1153. [DOI] [PubMed] [Google Scholar]
  54. Tully D. B., Collins B. J., Overstreet J. D., Smith C. S., Dinse G. E., Mumtaz M. M., Chapin R. E. Effects of arsenic, cadmium, chromium, and lead on gene expression regulated by a battery of 13 different promoters in recombinant HepG2 cells. Toxicol Appl Pharmacol. 2000 Oct 15;168(2):79–90. doi: 10.1006/taap.2000.9014. [DOI] [PubMed] [Google Scholar]
  55. Tully D. B., Cox V. T., Mumtaz M. M., Davis V. L., Chapin R. E. Six high-priority organochlorine pesticides, either singly or in combination, are nonestrogenic in transfected HeLa cells. Reprod Toxicol. 2000 Mar-Apr;14(2):95–102. doi: 10.1016/s0890-6238(00)00060-5. [DOI] [PubMed] [Google Scholar]
  56. Vogelstein B., Kinzler K. W. p53 function and dysfunction. Cell. 1992 Aug 21;70(4):523–526. doi: 10.1016/0092-8674(92)90421-8. [DOI] [PubMed] [Google Scholar]
  57. Wooden S. K., Li L. J., Navarro D., Qadri I., Pereira L., Lee A. S. Transactivation of the grp78 promoter by malfolded proteins, glycosylation block, and calcium ionophore is mediated through a proximal region containing a CCAAT motif which interacts with CTF/NF-I. Mol Cell Biol. 1991 Nov;11(11):5612–5623. doi: 10.1128/mcb.11.11.5612. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Ye J., Zhang X., Young H. A., Mao Y., Shi X. Chromium(VI)-induced nuclear factor-kappa B activation in intact cells via free radical reactions. Carcinogenesis. 1995 Oct;16(10):2401–2405. doi: 10.1093/carcin/16.10.2401. [DOI] [PubMed] [Google Scholar]
  59. Zhan Q., Carrier F., Fornace A. J., Jr Induction of cellular p53 activity by DNA-damaging agents and growth arrest. Mol Cell Biol. 1993 Jul;13(7):4242–4250. doi: 10.1128/mcb.13.7.4242. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES