Abstract
Signaling motifs (nuclear transcriptional receptors, kinase/phosphatase cascades, G-coupled protein receptors, etc.) have composite dose-response behaviors in relation to concentrations of protein receptors and endogenous signaling molecules. "Molecular circuits" include the biological components and their interactions that comprise the workings of these signaling motifs. Many of these molecular circuits have nonlinear dose-response behaviors for endogenous ligands and for exogenous toxicants, acting as switches with "all-or-none" responses over a narrow range of concentration. In turn, these biological switches regulate large-scale cellular processes, e.g., commitment to cell division, cell differentiation, and phenotypic alterations. Biologically based dose-response (BBDR) models accounting for these biological switches would improve risk assessment for many nonlinear processes in toxicology. These BBDR models must account for normal control of the signaling motifs and for perturbations by toxic compounds. We describe several of these biological switches, current tools available for constructing BBDR models of these processes, and the potential value of these models in risk assessment.
Full Text
The Full Text of this article is available as a PDF (1,000.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Andersen M. E., Barton H. A. Biological regulation of receptor-hormone complex concentrations in relation to dose-response assessments for endocrine-active compounds. Toxicol Sci. 1999 Mar;48(1):38–50. doi: 10.1093/toxsci/48.1.38. [DOI] [PubMed] [Google Scholar]
- Andersen M. E., Birnbaum L. S., Barton H. A., Eklund C. R. Regional hepatic CYP1A1 and CYP1A2 induction with 2,3,7,8-tetrachlorodibenzo-p-dioxin evaluated with a multicompartment geometric model of hepatic zonation. Toxicol Appl Pharmacol. 1997 May;144(1):145–155. doi: 10.1006/taap.1996.8067. [DOI] [PubMed] [Google Scholar]
- Andersen M. E., Dennison J. E. Mode of action and tissue dosimetry in current and future risk assessments. Sci Total Environ. 2001 Jul 2;274(1-3):3–14. doi: 10.1016/s0048-9697(01)00744-6. [DOI] [PubMed] [Google Scholar]
- Andersen M. E., Eklund C. R., Mills J. J., Barton H. A., Birnbaum L. S. A multicompartment geometric model of the liver in relation to regional induction of cytochrome P450s. Toxicol Appl Pharmacol. 1997 May;144(1):135–144. doi: 10.1006/taap.1996.8066. [DOI] [PubMed] [Google Scholar]
- Bailey J. E. Complex biology with no parameters. Nat Biotechnol. 2001 Jun;19(6):503–504. doi: 10.1038/89204. [DOI] [PubMed] [Google Scholar]
- Bhalla U. S., Iyengar R. Emergent properties of networks of biological signaling pathways. Science. 1999 Jan 15;283(5400):381–387. doi: 10.1126/science.283.5400.381. [DOI] [PubMed] [Google Scholar]
- Bock K. W. Aryl hydrocarbon or dioxin receptor: biologic and toxic responses. Rev Physiol Biochem Pharmacol. 1994;125:1–42. doi: 10.1007/BFb0030908. [DOI] [PubMed] [Google Scholar]
- Clewell H. J., 3rd, Andersen M. E. Risk assessment extrapolations and physiological modeling. Toxicol Ind Health. 1985 Dec;1(4):111–131. doi: 10.1177/074823378500100408. [DOI] [PubMed] [Google Scholar]
- Clément F., Monniaux D., Stark J., Hardy K., Thalabard J. C., Franks S., Claude D. Mathematical model of FSH-induced cAMP production in ovarian follicles. Am J Physiol Endocrinol Metab. 2001 Jul;281(1):E35–E53. doi: 10.1152/ajpendo.2001.281.1.E35. [DOI] [PubMed] [Google Scholar]
- Conolly R. B., Kimbell J. S. Computer simulation of cell growth governed by stochastic processes: application to clonal growth cancer models. Toxicol Appl Pharmacol. 1994 Feb;124(2):284–295. doi: 10.1006/taap.1994.1034. [DOI] [PubMed] [Google Scholar]
- Costerton J. W., Lewandowski Z., Caldwell D. E., Korber D. R., Lappin-Scott H. M. Microbial biofilms. Annu Rev Microbiol. 1995;49:711–745. doi: 10.1146/annurev.mi.49.100195.003431. [DOI] [PubMed] [Google Scholar]
- Csete Marie E., Doyle John C. Reverse engineering of biological complexity. Science. 2002 Mar 1;295(5560):1664–1669. doi: 10.1126/science.1069981. [DOI] [PubMed] [Google Scholar]
- Davidson Eric H., Rast Jonathan P., Oliveri Paola, Ransick Andrew, Calestani Cristina, Yuh Chiou-Hwa, Minokawa Takuya, Amore Gabriele, Hinman Veronica, Arenas-Mena Cesar. A genomic regulatory network for development. Science. 2002 Mar 1;295(5560):1669–1678. doi: 10.1126/science.1069883. [DOI] [PubMed] [Google Scholar]
- Davies D. G., Parsek M. R., Pearson J. P., Iglewski B. H., Costerton J. W., Greenberg E. P. The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science. 1998 Apr 10;280(5361):295–298. doi: 10.1126/science.280.5361.295. [DOI] [PubMed] [Google Scholar]
- Ferrell J. E., Jr, Machleder E. M. The biochemical basis of an all-or-none cell fate switch in Xenopus oocytes. Science. 1998 May 8;280(5365):895–898. doi: 10.1126/science.280.5365.895. [DOI] [PubMed] [Google Scholar]
- Fuqua W. C., Winans S. C., Greenberg E. P. Quorum sensing in bacteria: the LuxR-LuxI family of cell density-responsive transcriptional regulators. J Bacteriol. 1994 Jan;176(2):269–275. doi: 10.1128/jb.176.2.269-275.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Garrison P. M., Rogers J. M., Brackney W. R., Denison M. S. Effects of histone deacetylase inhibitors on the Ah receptor gene promoter. Arch Biochem Biophys. 2000 Feb 15;374(2):161–171. doi: 10.1006/abbi.1999.1620. [DOI] [PubMed] [Google Scholar]
- Germain R. N. The art of the probable: system control in the adaptive immune system. Science. 2001 Jul 13;293(5528):240–245. doi: 10.1126/science.1062946. [DOI] [PubMed] [Google Scholar]
- Heindel J. J., Chapin R. E. Inhibition of FSH-stimulated cAMP accumulation by mono(2-ethylhexyl) phthalate in primary rat Sertoli cell cultures. Toxicol Appl Pharmacol. 1989 Feb;97(2):377–385. doi: 10.1016/0041-008x(89)90342-6. [DOI] [PubMed] [Google Scholar]
- Jeon M. S., Esser C. The murine IL-2 promoter contains distal regulatory elements responsive to the Ah receptor, a member of the evolutionarily conserved bHLH-PAS transcription factor family. J Immunol. 2000 Dec 15;165(12):6975–6983. doi: 10.4049/jimmunol.165.12.6975. [DOI] [PubMed] [Google Scholar]
- Jirtle R. L., Meyer S. A., Brockenbrough J. S. Liver tumor promoter phenobarbital: a biphasic modulator of hepatocyte proliferation. Prog Clin Biol Res. 1991;369:209–216. [PubMed] [Google Scholar]
- Kandel E. R. The molecular biology of memory storage: a dialogue between genes and synapses. Science. 2001 Nov 2;294(5544):1030–1038. doi: 10.1126/science.1067020. [DOI] [PubMed] [Google Scholar]
- Kavlock R. J., Ankley G. T. A perspective on the risk assessment process for endocrine-disruptive effects on wildlife and human health. Risk Anal. 1996 Dec;16(6):731–739. doi: 10.1111/j.1539-6924.1996.tb00824.x. [DOI] [PubMed] [Google Scholar]
- Kitano Hiroaki. Systems biology: a brief overview. Science. 2002 Mar 1;295(5560):1662–1664. doi: 10.1126/science.1069492. [DOI] [PubMed] [Google Scholar]
- Kociba R. J., Keyes D. G., Beyer J. E., Carreon R. M., Wade C. E., Dittenber D. A., Kalnins R. P., Frauson L. E., Park C. N., Barnard S. D. Results of a two-year chronic toxicity and oncogenicity study of 2,3,7,8-tetrachlorodibenzo-p-dioxin in rats. Toxicol Appl Pharmacol. 1978 Nov;46(2):279–303. doi: 10.1016/0041-008x(78)90075-3. [DOI] [PubMed] [Google Scholar]
- Koerber A. J., King J. R., Ward J. P., Williams P., Croft J. M., Sockett R. E. A mathematical model of partial-thickness burn-wound infection by Pseudomonas aeruginosa: quorum sensing and the build-up to invasion. Bull Math Biol. 2002 Mar;64(2):239–259. doi: 10.1006/bulm.2001.0272. [DOI] [PubMed] [Google Scholar]
- Kohn K. W. Molecular interaction map of the mammalian cell cycle control and DNA repair systems. Mol Biol Cell. 1999 Aug;10(8):2703–2734. doi: 10.1091/mbc.10.8.2703. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kohn M. C., Lucier G. W., Clark G. C., Sewall C., Tritscher A. M., Portier C. J. A mechanistic model of effects of dioxin on gene expression in the rat liver. Toxicol Appl Pharmacol. 1993 May;120(1):138–154. doi: 10.1006/taap.1993.1096. [DOI] [PubMed] [Google Scholar]
- Lander E. S., Weinberg R. A. Genomics: journey to the center of biology. Science. 2000 Mar 10;287(5459):1777–1782. doi: 10.1126/science.287.5459.1777. [DOI] [PubMed] [Google Scholar]
- Landers J. P., Spelsberg T. C. New concepts in steroid hormone action: transcription factors, proto-oncogenes, and the cascade model for steroid regulation of gene expression. Crit Rev Eukaryot Gene Expr. 1992;2(1):19–63. [PubMed] [Google Scholar]
- Leung H. W., Paustenbach D. J., Murray F. J., Andersen M. E. A physiological pharmacokinetic description of the tissue distribution and enzyme-inducing properties of 2,3,7,8-tetrachlorodibenzo-p-dioxin in the rat. Toxicol Appl Pharmacol. 1990 May;103(3):399–410. doi: 10.1016/0041-008x(90)90313-j. [DOI] [PubMed] [Google Scholar]
- Liao Kai H., Dobrev Ivan D., Dennison James E., Jr, Andersen Melvin E., Reisfeld Brad, Reardon Kenneth F., Campain Julie A., Wei Wei, Klein Michael T., Quann Richard J. Application of biologically based computer modeling to simple or complex mixtures. Environ Health Perspect. 2002 Dec;110 (Suppl 6):957–963. doi: 10.1289/ehp.02110s6957. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moolgavkar S. H., Knudson A. G., Jr Mutation and cancer: a model for human carcinogenesis. J Natl Cancer Inst. 1981 Jun;66(6):1037–1052. doi: 10.1093/jnci/66.6.1037. [DOI] [PubMed] [Google Scholar]
- Noble Denis. Modeling the heart--from genes to cells to the whole organ. Science. 2002 Mar 1;295(5560):1678–1682. doi: 10.1126/science.1069881. [DOI] [PubMed] [Google Scholar]
- Pitot H. C., Goldsworthy T. L., Moran S., Kennan W., Glauert H. P., Maronpot R. R., Campbell H. A. A method to quantitate the relative initiating and promoting potencies of hepatocarcinogenic agents in their dose-response relationships to altered hepatic foci. Carcinogenesis. 1987 Oct;8(10):1491–1499. doi: 10.1093/carcin/8.10.1491. [DOI] [PubMed] [Google Scholar]
- Richards J. S. New signaling pathways for hormones and cyclic adenosine 3',5'-monophosphate action in endocrine cells. Mol Endocrinol. 2001 Feb;15(2):209–218. doi: 10.1210/mend.15.2.0606. [DOI] [PubMed] [Google Scholar]
- Schuchard M., Landers J. P., Sandhu N. P., Spelsberg T. C. Steroid hormone regulation of nuclear proto-oncogenes. Endocr Rev. 1993 Dec;14(6):659–669. doi: 10.1210/edrv-14-6-659. [DOI] [PubMed] [Google Scholar]
- Setzer R. W., Lau C., Mole M. L., Copeland M. F., Rogers J. M., Kavlock R. J. Toward a biologically based dose-response model for developmental toxicity of 5-fluorouracil in the rat: a mathematical construct. Toxicol Sci. 2001 Jan;59(1):49–58. doi: 10.1093/toxsci/59.1.49. [DOI] [PubMed] [Google Scholar]
- Shapiro D. J., Barton M. C., McKearin D. M., Chang T. C., Lew D., Blume J., Nielsen D. A., Gould L. Estrogen regulation of gene transcription and mRNA stability. Recent Prog Horm Res. 1989;45:29–64. doi: 10.1016/b978-0-12-571145-6.50006-6. [DOI] [PubMed] [Google Scholar]
- Suk William A., Olden Kenneth, Yang Raymond S. H. Chemical mixtures research: significance and future perspectives. Environ Health Perspect. 2002 Dec;110 (Suppl 6):891–892. doi: 10.1289/ehp.110-1241268. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tata J. R., Baker B. S., Machuca I., Rabelo E. M., Yamauchi K. Autoinduction of nuclear receptor genes and its significance. J Steroid Biochem Mol Biol. 1993 Aug;46(2):105–119. doi: 10.1016/0960-0760(93)90286-6. [DOI] [PubMed] [Google Scholar]
- Tomita M., Hashimoto K., Takahashi K., Shimizu T. S., Matsuzaki Y., Miyoshi F., Saito K., Tanida S., Yugi K., Venter J. C. E-CELL: software environment for whole-cell simulation. Bioinformatics. 1999 Jan;15(1):72–84. doi: 10.1093/bioinformatics/15.1.72. [DOI] [PubMed] [Google Scholar]
- Tritscher A. M., Goldstein J. A., Portier C. J., McCoy Z., Clark G. C., Lucier G. W. Dose-response relationships for chronic exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin in a rat tumor promotion model: quantification and immunolocalization of CYP1A1 and CYP1A2 in the liver. Cancer Res. 1992 Jun 15;52(12):3436–3442. [PubMed] [Google Scholar]
- Tyson J. J., Chen K., Novak B. Network dynamics and cell physiology. Nat Rev Mol Cell Biol. 2001 Dec;2(12):908–916. doi: 10.1038/35103078. [DOI] [PubMed] [Google Scholar]
- Vanden Heuvel J. P., Clark G. C., Kohn M. C., Tritscher A. M., Greenlee W. F., Lucier G. W., Bell D. A. Dioxin-responsive genes: examination of dose-response relationships using quantitative reverse transcriptase-polymerase chain reaction. Cancer Res. 1994 Jan 1;54(1):62–68. [PubMed] [Google Scholar]
- Vohradský J. Neural network model of gene expression. FASEB J. 2001 Mar;15(3):846–854. doi: 10.1096/fj.00-0361com. [DOI] [PubMed] [Google Scholar]
- Weghorst C. M., Devor D. E., Henneman J. R., Ward J. M. Promotion of hepatocellular foci and adenomas by di(2-ethylhexyl) phthalate and phenobarbital in C3H/HeNCr mice following exposure to N-nitrosodiethylamine at 15 days of age. Exp Toxicol Pathol. 1994 Feb;45(7):423–431. doi: 10.1016/s0940-2993(11)80372-6. [DOI] [PubMed] [Google Scholar]
- Weng G., Bhalla U. S., Iyengar R. Complexity in biological signaling systems. Science. 1999 Apr 2;284(5411):92–96. doi: 10.1126/science.284.5411.92. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wilson C. L., Safe S. Mechanisms of ligand-induced aryl hydrocarbon receptor-mediated biochemical and toxic responses. Toxicol Pathol. 1998 Sep-Oct;26(5):657–671. doi: 10.1177/019262339802600510. [DOI] [PubMed] [Google Scholar]
- Xu W., Chen H., Du K., Asahara H., Tini M., Emerson B. M., Montminy M., Evans R. M. A transcriptional switch mediated by cofactor methylation. Science. 2001 Nov 8;294(5551):2507–2511. doi: 10.1126/science.1065961. [DOI] [PubMed] [Google Scholar]