Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 2002 Dec;110(Suppl 6):1031–1036. doi: 10.1289/ehp.02110s61031

Protein binding of isofluorophate in vivo after coexposure to multiple chemicals.

John S Vogel 1, Garrett A Keating 2nd 1, Bruce A Buchholz 1
PMCID: PMC1241288  PMID: 12634135

Abstract

Full toxicologic profiles of chemical mixtures, including dose-response extrapolations to realistic exposures, is a prohibitive analytical problem, even for a restricted class of chemicals. We present an approach to probing in vivo interactions of pesticide mixtures at relevant low doses using a monitor compound to report the response of biochemical pathways shared by mixture components. We use accelerator mass spectrometry (AMS) to quantify [14C]-diisopropylfluorophosphate as a tracer at attomole levels with 1-5% precision after coexposures to parathion (PTN), permethrin (PER), and pyridostigmine bromide separately and in conjunction. Pyridostigmine shows an overall protective effect against tracer binding in plasma, red blood cells, muscle, and brain that is not explained as competitive protein binding. PTN and PER induce a significant 25-30% increase in the amount of tracer reaching the brain with or without pyridostigmine. The sensitivity of AMS for isotope-labeled tracer compounds can be used to probe the physiologic responses of specific biochemical pathways to multiple compound exposures.

Full Text

The Full Text of this article is available as a PDF (186.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abou-Donia M. B., Goldstein L. B., Jones K. H., Abdel-Rahman A. A., Damodaran T. V., Dechkovskaia A. M., Bullman S. L., Amir B. E., Khan W. A. Locomotor and sensorimotor performance deficit in rats following exposure to pyridostigmine bromide, DEET, and permethrin, alone and in combination. Toxicol Sci. 2001 Apr;60(2):305–314. doi: 10.1093/toxsci/60.2.305. [DOI] [PubMed] [Google Scholar]
  2. Billecke S. S., Primo-Parmo S. L., Dunlop C. S., Doorn J. A., La Du B. N., Broomfield C. A. Characterization of a soluble mouse liver enzyme capable of hydrolyzing diisopropyl phosphorofluoridate. Chem Biol Interact. 1999 May 14;119-120:251–256. doi: 10.1016/s0009-2797(99)00034-4. [DOI] [PubMed] [Google Scholar]
  3. Blomqvist G., Tavitian B., Pappata S., Crouzel C., Jobert A., Doignon I., Di Giamberardino L. Quantitative measurement of cerebral acetylcholinesterase using. J Cereb Blood Flow Metab. 2001 Feb;21(2):114–131. doi: 10.1097/00004647-200102000-00003. [DOI] [PubMed] [Google Scholar]
  4. Buchholz B. A., Pawley N. H., Vogel J. S., Mauthe R. J. Pyrethroid decrease in central nervous system from nerve agent pretreatment. J Appl Toxicol. 1997 Jul-Aug;17(4):231–234. doi: 10.1002/(sici)1099-1263(199707)17:4<231::aid-jat434>3.0.co;2-j. [DOI] [PubMed] [Google Scholar]
  5. Cao C. J., Mioduszewski R. J., Menking D. E., Valdes J. J., Katz E. J., Eldefrawi M. E., Eldefrawi A. T. Cytotoxicity of organophosphate anticholinesterases. In Vitro Cell Dev Biol Anim. 1999 Oct;35(9):493–500. doi: 10.1007/s11626-999-0059-8. [DOI] [PubMed] [Google Scholar]
  6. Carrington C. D., Abou-Donia M. B. Characterization of [3H]di-isopropyl phosphorofluoridate-binding proteins in hen brain. Rates of phosphorylation and sensitivity to neurotoxic and non-neurotoxic organophosphorus compounds. Biochem J. 1985 Jun 15;228(3):537–544. doi: 10.1042/bj2280537. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. D'Mello G. D. Behavioural toxicity of anticholinesterases in humans and animals--a review. Hum Exp Toxicol. 1993 Jan;12(1):3–7. doi: 10.1177/096032719301200101. [DOI] [PubMed] [Google Scholar]
  8. Dingley K. H., Curtis K. D., Nowell S., Felton J. S., Lang N. P., Turteltaub K. W. DNA and protein adduct formation in the colon and blood of humans after exposure to a dietary-relevant dose of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine. Cancer Epidemiol Biomarkers Prev. 1999 Jun;8(6):507–512. [PubMed] [Google Scholar]
  9. Friedman A., Kaufer D., Shemer J., Hendler I., Soreq H., Tur-Kaspa I. Pyridostigmine brain penetration under stress enhances neuronal excitability and induces early immediate transcriptional response. Nat Med. 1996 Dec;2(12):1382–1385. doi: 10.1038/nm1296-1382. [DOI] [PubMed] [Google Scholar]
  10. Garey J., Wolff M. S. Estrogenic and antiprogestagenic activities of pyrethroid insecticides. Biochem Biophys Res Commun. 1998 Oct 29;251(3):855–859. doi: 10.1006/bbrc.1998.9569. [DOI] [PubMed] [Google Scholar]
  11. Gearhart J. M., Jepson G. W., Clewell H. J., Andersen M. E., Conolly R. B. Physiologically based pharmacokinetic model for the inhibition of acetylcholinesterase by organophosphate esters. Environ Health Perspect. 1994 Dec;102 (Suppl 11):51–60. doi: 10.1289/ehp.94102s1151. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Grauer E., Alkalai D., Kapon J., Cohen G., Raveh L. Stress does not enable pyridostigmine to inhibit brain cholinesterase after parenteral administration. Toxicol Appl Pharmacol. 2000 May 1;164(3):301–304. doi: 10.1006/taap.2000.8906. [DOI] [PubMed] [Google Scholar]
  13. Haley R. W., Kurt T. L. Self-reported exposure to neurotoxic chemical combinations in the Gulf War. A cross-sectional epidemiologic study. JAMA. 1997 Jan 15;277(3):231–237. [PubMed] [Google Scholar]
  14. Ivens I. A., Schmuck G., Machemer L. Learning and memory of rats after long-term administration of low doses of parathion. Toxicol Sci. 1998 Nov;46(1):101–111. doi: 10.1006/toxs.1998.2508. [DOI] [PubMed] [Google Scholar]
  15. Jett D. A., Hill E. F., Fernando J. C., Eldefrawi M. E., Eldefrawi A. T. Down-regulation of muscarinic receptors and the m3 subtype in white-footed mice by dietary exposure to parathion. J Toxicol Environ Health. 1993 Jul;39(3):395–415. doi: 10.1080/15287399309531760. [DOI] [PubMed] [Google Scholar]
  16. Kidd D., Liu Y., Cravatt B. F. Profiling serine hydrolase activities in complex proteomes. Biochemistry. 2001 Apr 3;40(13):4005–4015. doi: 10.1021/bi002579j. [DOI] [PubMed] [Google Scholar]
  17. Krivitski N. M., Starostin D., Smith T. L. Extracorporeal recording of mouse hemodynamic parameters by ultrasound velocity dilution. ASAIO J. 1999 Jan-Feb;45(1):32–36. doi: 10.1097/00002480-199901000-00008. [DOI] [PubMed] [Google Scholar]
  18. Lu C., Knutson D. E., Fisker-Andersen J., Fenske R. A. Biological monitoring survey of organophosphorus pesticide exposure among pre-school children in the Seattle metropolitan area. Environ Health Perspect. 2001 Mar;109(3):299–303. doi: 10.1289/ehp.01109299. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Martin B. R. Biodisposition of [3H]diisopropylfluorophosphate in mice. Toxicol Appl Pharmacol. 1985 Feb;77(2):275–284. doi: 10.1016/0041-008x(85)90327-8. [DOI] [PubMed] [Google Scholar]
  20. O'Neill J. J. Non-cholinesterase effects of anticholinesterases. Fundam Appl Toxicol. 1981 Mar-Apr;1(2):154–160. [PubMed] [Google Scholar]
  21. Ogura H., Kosasa T., Kuriya Y., Yamanishi Y. Comparison of inhibitory activities of donepezil and other cholinesterase inhibitors on acetylcholinesterase and butyrylcholinesterase in vitro. Methods Find Exp Clin Pharmacol. 2000 Oct;22(8):609–613. doi: 10.1358/mf.2000.22.8.701373. [DOI] [PubMed] [Google Scholar]
  22. Pope C. N. Organophosphorus pesticides: do they all have the same mechanism of toxicity? J Toxicol Environ Health B Crit Rev. 1999 Apr-Jun;2(2):161–181. doi: 10.1080/109374099281205. [DOI] [PubMed] [Google Scholar]
  23. Rao G. V., Rao K. S. Modulation in acetylcholinesterase of rat brain by pyrethroids in vivo and an in vitro kinetic study. J Neurochem. 1995 Nov;65(5):2259–2266. doi: 10.1046/j.1471-4159.1995.65052259.x. [DOI] [PubMed] [Google Scholar]
  24. Richards P., Johnson M., Ray D., Walker C. Novel protein targets for organophosphorus compounds. Chem Biol Interact. 1999 May 14;119-120:503–511. doi: 10.1016/s0009-2797(99)00064-2. [DOI] [PubMed] [Google Scholar]
  25. Sharma H. S., Cervós-Navarro J., Dey P. K. Increased blood-brain barrier permeability following acute short-term swimming exercise in conscious normotensive young rats. Neurosci Res. 1991 Apr;10(3):211–221. doi: 10.1016/0168-0102(91)90058-7. [DOI] [PubMed] [Google Scholar]
  26. Song Xun, Tian Hailin, Bressler Joseph, Pruett Stephen, Pope Carey. Acute and repeated restraint stress have little effect on pyridostigmine toxicity or brain regional cholinesterase inhibition in rats. Toxicol Sci. 2002 Sep;69(1):157–164. doi: 10.1093/toxsci/69.1.157. [DOI] [PubMed] [Google Scholar]
  27. Storm J. E., Rozman K. K., Doull J. Occupational exposure limits for 30 organophosphate pesticides based on inhibition of red blood cell acetylcholinesterase. Toxicology. 2000 Sep 7;150(1-3):1–29. doi: 10.1016/s0300-483x(00)00219-5. [DOI] [PubMed] [Google Scholar]
  28. Tang J., Chambers J. E. Detoxication of paraoxon by rat liver homogenate and serum carboxylesterases and A-esterases. J Biochem Mol Toxicol. 1999;13(5):261–268. doi: 10.1002/(sici)1099-0461(1999)13:5<261::aid-jbt6>3.0.co;2-0. [DOI] [PubMed] [Google Scholar]
  29. Vogel J. S., Turteltaub K. W., Finkel R., Nelson D. E. Accelerator mass spectrometry. Anal Chem. 1995 Jun 1;67(11):353A–359A. doi: 10.1021/ac00107a001. [DOI] [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES