Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 2002 Dec;110(Suppl 6):1085–1091. doi: 10.1289/ehp.02110s61085

Measurement of p-nitrophenol in the urine of residents whose homes were contaminated with methyl parathion.

Dana B Barr 1, Wayman E Turner 1, Emily DiPietro 1, P Cheryl McClure 1, Samuel E Baker 1, John R Barr 1, Kimberly Gehle 1, Raymond E Grissom Jr 1, Roberto Bravo 1, W Jack Driskell 1, Donald G Patterson Jr 1, Robert H Hill Jr 1, Larry L Needham 1, James L Pirkle 1, Eric J Sampson 1
PMCID: PMC1241298  PMID: 12634145

Abstract

During the last several years, illegal commercial application of methyl parathion (MP) in domestic settings in several U.S. Southeastern and Midwestern States has affected largely inner-city residents. As part of a multiagency response involving the U.S. Environmental Protection Agency (U.S. EPA), the Agency for Toxic Substances and Disease Registry (ATSDR), and state and local health departments, our laboratory developed a rapid, high-throughput, selective method for quantifying p-nitrophenol (PNP), a biomarker of MP exposure, using isotope dilution high-performance liquid chromatography-tandem mass spectrometry. We measured PNP in approximately 16,000 samples collected from residents of seven different states. Using this method, we were able to receive sample batches from each state; prepare, analyze, and quantify the samples for PNP; verify the results; and report the data to the health departments and ATSDR in about 48 hr. These data indicate that many residents had urinary PNP concentrations well in excess of those of the general U.S. population. In fact, their urinary PNP concentrations were more consistent with those seen in occupational settings or in poisoning cases. Although these data, when coupled with other MP metabolite data, suggest that many residents with the highest concentrations of urinary PNP had significant exposure to MP, they do not unequivocally rule out exposure to PNP resulting from environmental degradation of MP. Even with their limitations, these data were used with the assumption that all PNP was derived from MP exposure, which enabled the U.S. EPA and ATSDR to develop a comprehensive, biologically driven response that was protective of human health, especially susceptible populations, and included clinical evaluations, outreach activities, community education, integrated pest management, and decontamination of homes.

Full Text

The Full Text of this article is available as a PDF (182.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ARTERBERRY J. D., DURHAM W. F., ELLIOTT J. W., WOLFE H. R. Exposure to parathion. Measurement by blood cholinesterase level and urinary p-nitrophenol excretion. Arch Environ Health. 1961 Oct;3:476–485. doi: 10.1080/00039896.1961.10663054. [DOI] [PubMed] [Google Scholar]
  2. Abu-Qare A. W., Abdel-Rahman A. A., Ahmad H., Kishk A. M., Abou-Donia M. B. Absorption, distribution, metabolism and excretion of daily oral doses of [14C]methyl parathion in hens. Toxicol Lett. 2001 Dec 15;125(1-3):1–10. doi: 10.1016/s0378-4274(01)00409-x. [DOI] [PubMed] [Google Scholar]
  3. Abu-Qare A. W., Abou-Donia M. B. Urinary excretion of metabolites following a single dermal dose of [14C]methyl parathion in pregnant rats. Toxicology. 2000 Sep 7;150(1-3):119–127. doi: 10.1016/s0300-483x(00)00250-x. [DOI] [PubMed] [Google Scholar]
  4. Aprea C., Sciarra G., Sartorelli P., Desideri E., Amati R., Sartorelli E. Biological monitoring of exposure to organophosphorus insecticides by assay of urinary alkylphosphates: influence of protective measures during manual operations with treated plants. Int Arch Occup Environ Health. 1994;66(5):333–338. doi: 10.1007/BF00378366. [DOI] [PubMed] [Google Scholar]
  5. Barr D. B., Ashley D. L. A rapid, sensitive method for the quantitation of N-acetyl-S-(2-hydroxyethyl)-L-cysteine in human urine using isotope-dilution HPLC-MS-MS. J Anal Toxicol. 1998 Mar-Apr;22(2):96–104. doi: 10.1093/jat/22.2.96. [DOI] [PubMed] [Google Scholar]
  6. Benke G. M., Murphy S. D. The influence of age on the toxicity and metabolism of methyl parathion and parathion in male and female rats. Toxicol Appl Pharmacol. 1975 Feb;31(2):254–269. doi: 10.1016/0041-008x(75)90161-1. [DOI] [PubMed] [Google Scholar]
  7. Braeckman R. A., Audenaert F., Willems J. L., Belpaire F. M., Bogaert M. G. Toxicokinetics of methyl parathion and parathion in the dog after intravenous and oral administration. Arch Toxicol. 1983 Sep;54(1):71–82. doi: 10.1007/BF00277817. [DOI] [PubMed] [Google Scholar]
  8. Bravo Roberto, Driskell William J., Whitehead Ralph D., Jr, Needham Larry L., Barr Dana B. Quantitation of dialkyl phosphate metabolites of organophosphate pesticides in human urine using GC-MS-MS with isotopic internal standards. J Anal Toxicol. 2002 Jul-Aug;26(5):245–252. doi: 10.1093/jat/26.5.245. [DOI] [PubMed] [Google Scholar]
  9. Cho Y., Matsuoka N., Kamiya A. Determination of organophosphorous pesticides in biological samples of acute poisoning by HPLC with diode-array detector. Chem Pharm Bull (Tokyo) 1997 Apr;45(4):737–740. doi: 10.1248/cpb.45.737. [DOI] [PubMed] [Google Scholar]
  10. Colby B. N., McCaman M. W. A comparison of calculation procedures for isotope dilution determinations using gas chromatography mass spectrometry. Biomed Mass Spectrom. 1979 Jun;6(6):225–230. doi: 10.1002/bms.1200060602. [DOI] [PubMed] [Google Scholar]
  11. Davies J. E., Peterson J. C. Surveillance of occupational, accidental, and incidental exposure to organophosphate pesticides using urine alkyl phosphate and phenolic metabolite measurements. Ann N Y Acad Sci. 1997 Dec 26;837:257–268. doi: 10.1111/j.1749-6632.1997.tb56879.x. [DOI] [PubMed] [Google Scholar]
  12. De Schryver E., De Reu L., Belpaire F., Willems J. Toxicokinetics of methyl paraoxon in the dog. Arch Toxicol. 1987 Feb;59(5):319–322. doi: 10.1007/BF00295082. [DOI] [PubMed] [Google Scholar]
  13. Durham W. F., Wolfe H. R., Elliott J. W. Absorption and excretion of parathion by spraymen. Arch Environ Health. 1972 Jun;24(6):381–387. doi: 10.1080/00039896.1972.10666113. [DOI] [PubMed] [Google Scholar]
  14. Edgell K. W., Erb E. J., Wesselman R. J., Longbottom J. E. Gas chromatographic/electron capture detection method for determination of chlorinated acids in water: collaborative study. J AOAC Int. 1993 Sep-Oct;76(5):1098–1112. [PubMed] [Google Scholar]
  15. Esteban E., Rubin C., Hill R., Olson D., Pearce K. Association between indoor residential contamination with methyl parathion and urinary para-nitrophenol. J Expo Anal Environ Epidemiol. 1996 Jul-Sep;6(3):375–387. [PubMed] [Google Scholar]
  16. Hill R. H., Jr, Head S. L., Baker S., Gregg M., Shealy D. B., Bailey S. L., Williams C. C., Sampson E. J., Needham L. L. Pesticide residues in urine of adults living in the United States: reference range concentrations. Environ Res. 1995 Nov;71(2):99–108. doi: 10.1006/enrs.1995.1071. [DOI] [PubMed] [Google Scholar]
  17. Hill R. H., Jr, Shealy D. B., Head S. L., Williams C. C., Bailey S. L., Gregg M., Baker S. E., Needham L. L. Determination of pesticide metabolites in human urine using an isotope dilution technique and tandem mass spectrometry. J Anal Toxicol. 1995 Sep;19(5):323–329. doi: 10.1093/jat/19.5.323. [DOI] [PubMed] [Google Scholar]
  18. McCann Kenneth G., Moomey C. Michael, Runkle Kenny D., Hryhorczuk Daniel O., Clark J. Milton, Barr Dana B. Chicago area methyl parathion response. Environ Health Perspect. 2002 Dec;110 (Suppl 6):1075–1078. doi: 10.1289/ehp.02110s61075. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Morgan D. P., Hetzler H. L., Slach E. F., Lin L. I. Urinary excretion of paranitrophenol and alkyl phosphates following ingestion of methyl or ethyl parathion by human subjects. Arch Environ Contam Toxicol. 1977;6(2-3):159–173. doi: 10.1007/BF02097758. [DOI] [PubMed] [Google Scholar]
  20. Nigg H. N., Knaak J. B. Blood cholinesterases as human biomarkers of organophosphorus pesticide exposure. Rev Environ Contam Toxicol. 2000;163:29–111. doi: 10.1007/978-1-4757-6429-1_2. [DOI] [PubMed] [Google Scholar]
  21. Pappas C. J., Kyriakidis N. B., Athanasopoulos P. E. Degradation of parathion methyl on field-sprayed apples and stored apples. J AOAC Int. 1999 Mar-Apr;82(2):359–363. [PubMed] [Google Scholar]
  22. Rubin Carol, Esteban Emilio, Hill Robert H., Jr, Pearce Ken. Introduction--the methyl parathion story: a chronicle of misuse and preventable human exposure. Environ Health Perspect. 2002 Dec;110 (Suppl 6):1037–1040. doi: 10.1289/ehp.02110s61037. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Rubin Carol, Esteban Emilio, Kieszak Stephanie, Hill Robert H., Jr, Dunlop Boadie, Yacovac Rebecca, Trottier Janine, Boylan Kathy, Tomasewski Terri, Pearce Ken. Assessment of human exposure and human health effects after indoor application of methyl parathion in Lorain County, Ohio, 1995-1996. Environ Health Perspect. 2002 Dec;110 (Suppl 6):1047–1051. doi: 10.1289/ehp.02110s61047. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Schneider F, Steenland K, Hernandez B, Wilson B, Krieger R, Spencer J, Margetich S. Monitoring Peach Harvest Workers Exposed to Azinphosmethyl Residues in Sutter County, California, 1991. Environ Health Perspect. 1994 Jun;102(6-7):580–585. doi: 10.1289/ehp.94102580. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Whyatt R. M., Barr D. B. Measurement of organophosphate metabolites in postpartum meconium as a potential biomarker of prenatal exposure: a validation study. Environ Health Perspect. 2001 Apr;109(4):417–420. doi: 10.1289/ehp.01109417. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES