Abstract
Dichloroacetic acid (DCA) is carcinogenic to the B6C3F(1) mouse and the F344 rat. Given the carcinogenic potential of DCA in rodent liver and the known concentrations of this compound in drinking water, reliable biologically based models to reduce the uncertainty of risk assessment for human exposure to DCA are needed. Development of such models requires identification and quantification of premalignant hepatic lesions, identification of the doses at which these lesions occur, and determination of the likelihood that these lesions will progress to cancer. In this study we determined the dose response of histopathologic changes occurring in the livers of mice exposed to DCA (0.05-3.5 g/L) for 26-100 weeks. Lesions were classified as foci of cellular alteration smaller than one liver lobule (altered hepatic foci; AHF), foci of cellular alteration larger than one liver lobule (large foci of cellular alteration; LFCA), adenomas (ADs), or carcinomas (CAs). Histopathologic analysis of 598 premalignant lesions revealed that (a)) each lesion class had a predominant phenotype; (b)) AHF, LFCA, and AD demonstrated neoplastic progression with time; and (c)) independent of DCA dose and length of exposure effects, some toxic/adaptive changes in non-involved liver were related to this neoplastic progression. A lesion sequence for carcinogenesis in male B6C3F(1) mouse liver has been proposed that will enable development of a biologically based mathematical model for DCA. Because all classes of premalignant lesions and CAs were found at both lower and higher doses, these data are consistent with the conclusion that nongenotoxic mechanisms, such as negative selection, are relevant to DCA carcinogenesis at lower doses where DCA genotoxicity has not been observed.
Full Text
The Full Text of this article is available as a PDF (15.3 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bannasch P. Preneoplastic lesions as end points in carcinogenicity testing. I. Hepatic preneoplasia. Carcinogenesis. 1986 May;7(5):689–695. doi: 10.1093/carcin/7.5.689. [DOI] [PubMed] [Google Scholar]
- Bull R. J., Sanchez I. M., Nelson M. A., Larson J. L., Lansing A. J. Liver tumor induction in B6C3F1 mice by dichloroacetate and trichloroacetate. Toxicology. 1990 Sep;63(3):341–359. doi: 10.1016/0300-483x(90)90195-m. [DOI] [PubMed] [Google Scholar]
- Carter J. H., Carter H. W., DeAngelo A. B. Biochemical, pathologic and morphometric alterations induced in male B6C3F1 mouse liver by short-term exposure to dichloroacetic acid. Toxicol Lett. 1995 Nov;81(1):55–71. doi: 10.1016/0378-4274(95)03409-9. [DOI] [PubMed] [Google Scholar]
- Chang L. W., Daniel F. B., DeAngelo A. B. Analysis of DNA strand breaks induced in rodent liver in vivo, hepatocytes in primary culture, and a human cell line by chlorinated acetic acids and chlorinated acetaldehydes. Environ Mol Mutagen. 1992;20(4):277–288. doi: 10.1002/em.2850200406. [DOI] [PubMed] [Google Scholar]
- Daniel F. B., DeAngelo A. B., Stober J. A., Olson G. R., Page N. P. Hepatocarcinogenicity of chloral hydrate, 2-chloroacetaldehyde, and dichloroacetic acid in the male B6C3F1 mouse. Fundam Appl Toxicol. 1992 Aug;19(2):159–168. doi: 10.1016/0272-0590(92)90147-a. [DOI] [PubMed] [Google Scholar]
- DeAngelo A. B., Daniel F. B., McMillan L., Wernsing P., Savage R. E., Jr Species and strain sensitivity to the induction of peroxisome proliferation by chloroacetic acids. Toxicol Appl Pharmacol. 1989 Nov;101(2):285–298. doi: 10.1016/0041-008x(89)90277-9. [DOI] [PubMed] [Google Scholar]
- DeAngelo A. B., Daniel F. B., Most B. M., Olson G. R. The carcinogenicity of dichloroacetic acid in the male Fischer 344 rat. Toxicology. 1996 Dec 18;114(3):207–221. doi: 10.1016/s0300-483x(96)03510-x. [DOI] [PubMed] [Google Scholar]
- DeAngelo A. B., Daniel F. B., Stober J. A., Olson G. R. The carcinogenicity of dichloroacetic acid in the male B6C3F1 mouse. Fundam Appl Toxicol. 1991 Feb;16(2):337–347. doi: 10.1016/0272-0590(91)90118-n. [DOI] [PubMed] [Google Scholar]
- DeAngelo A. B., George M. H., House D. E. Hepatocarcinogenicity in the male B6C3F1 mouse following a lifetime exposure to dichloroacetic acid in the drinking water: dose-response determination and modes of action. J Toxicol Environ Health A. 1999 Dec 24;58(8):485–507. doi: 10.1080/009841099157115. [DOI] [PubMed] [Google Scholar]
- DeMarini D. M., Perry E., Shelton M. L. Dichloroacetic acid and related compounds: induction of prophage in E. coli and mutagenicity and mutation spectra in Salmonella TA100. Mutagenesis. 1994 Sep;9(5):429–437. doi: 10.1093/mutage/9.5.429. [DOI] [PubMed] [Google Scholar]
- Farber E. Clonal adaptation during carcinogenesis. Biochem Pharmacol. 1990 Jun 15;39(12):1837–1846. doi: 10.1016/0006-2952(90)90599-g. [DOI] [PubMed] [Google Scholar]
- Farber E., Rubin H. Cellular adaptation in the origin and development of cancer. Cancer Res. 1991 Jun 1;51(11):2751–2761. [PubMed] [Google Scholar]
- Ferreira-Gonzalez A., DeAngelo A. B., Nasim S., Garrett C. T. Ras oncogene activation during hepatocarcinogenesis in B6C3F1 male mice by dichloroacetic and trichloroacetic acids. Carcinogenesis. 1995 Mar;16(3):495–500. doi: 10.1093/carcin/16.3.495. [DOI] [PubMed] [Google Scholar]
- Fox A. W., Yang X., Murli H., Lawlor T. E., Cifone M. A., Reno F. E. Absence of mutagenic effects of sodium dichloroacetate. Fundam Appl Toxicol. 1996 Jul;32(1):87–95. doi: 10.1006/faat.1996.0110. [DOI] [PubMed] [Google Scholar]
- Frith C. H., Ward J. M. A morphologic classification of proliferative and neoplastic hepatic lesions in mice. J Environ Pathol Toxicol. 1979 Dec;3(1-2):329–351. [PubMed] [Google Scholar]
- Fuscoe J. C., Afshari A. J., George M. H., DeAngelo A. B., Tice R. R., Salman T., Allen J. W. In vivo genotoxicity of dichloroacetic acid: evaluation with the mouse peripheral blood micronucleus assay and the single cell gel assay. Environ Mol Mutagen. 1996;27(1):1–9. doi: 10.1002/(SICI)1098-2280(1996)27:1<1::AID-EM1>3.0.CO;2-L. [DOI] [PubMed] [Google Scholar]
- Giller S., Le Curieux F., Erb F., Marzin D. Comparative genotoxicity of halogenated acetic acids found in drinking water. Mutagenesis. 1997 Sep;12(5):321–328. doi: 10.1093/mutage/12.5.321. [DOI] [PubMed] [Google Scholar]
- Harrington-Brock K., Doerr C. L., Moore M. M. Mutagenicity of three disinfection by-products: di- and trichloroacetic acid and chloral hydrate in L5178Y/TK +/- (-)3.7.2C mouse lymphoma cells. Mutat Res. 1998 Mar 30;413(3):265–276. doi: 10.1016/s1383-5718(98)00026-6. [DOI] [PubMed] [Google Scholar]
- Herren-Freund S. L., Pereira M. A., Khoury M. D., Olson G. The carcinogenicity of trichloroethylene and its metabolites, trichloroacetic acid and dichloroacetic acid, in mouse liver. Toxicol Appl Pharmacol. 1987 Sep 15;90(2):183–189. doi: 10.1016/0041-008x(87)90325-5. [DOI] [PubMed] [Google Scholar]
- Imaida K., Tatematsu M., Kato T., Tsuda H., Ito N. Advantages and limitations of stereological estimation of placental glutathione S-transferase-positive rat liver cell foci by computerized three-dimensional reconstruction. Jpn J Cancer Res. 1989 Apr;80(4):326–330. doi: 10.1111/j.1349-7006.1989.tb02314.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ito N., Tatematsu M., Hasegawa R., Tsuda H. Medium-term bioassay system for detection of carcinogens and modifiers of hepatocarcinogenesis utilizing the GST-P positive liver cell focus as an endpoint marker. Toxicol Pathol. 1989;17(4 Pt 1):630–641. doi: 10.1177/0192623389017004108. [DOI] [PubMed] [Google Scholar]
- Kato-Weinstein J., Lingohr M. K., Orner G. A., Thrall B. D., Bull R. J. Effects of dichloroacetate on glycogen metabolism in B6C3F1 mice. Toxicology. 1998 Sep 15;130(2-3):141–154. doi: 10.1016/s0300-483x(98)00106-1. [DOI] [PubMed] [Google Scholar]
- Klaunig J. E., Kamendulis L. M., Xu Y. Epigenetic mechanisms of chemical carcinogenesis. Hum Exp Toxicol. 2000 Oct;19(10):543–555. doi: 10.1191/096032700701546442. [DOI] [PubMed] [Google Scholar]
- Leavitt S. A., DeAngelo A. B., George M. H., Ross J. A. Assessment of the mutagenicity of dichloroacetic acid in lacI transgenic B6C3F1 mouse liver. Carcinogenesis. 1997 Nov;18(11):2101–2106. doi: 10.1093/carcin/18.11.2101. [DOI] [PubMed] [Google Scholar]
- Morris R. D., Audet A. M., Angelillo I. F., Chalmers T. C., Mosteller F. Chlorination, chlorination by-products, and cancer: a meta-analysis. Am J Public Health. 1992 Jul;82(7):955–963. doi: 10.2105/ajph.82.7.955. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pereira M. A. Carcinogenic activity of dichloroacetic acid and trichloroacetic acid in the liver of female B6C3F1 mice. Fundam Appl Toxicol. 1996 Jun;31(2):192–199. doi: 10.1006/faat.1996.0091. [DOI] [PubMed] [Google Scholar]
- Richmond R. E., Carter J. H., Carter H. W., Daniel F. B., DeAngelo A. B. Immunohistochemical analysis of dichloroacetic acid (DCA)-induced hepatocarcinogenesis in male Fischer (F344) rats. Cancer Lett. 1995 May 25;92(1):67–76. doi: 10.1016/0304-3835(94)03756-9. [DOI] [PubMed] [Google Scholar]
- Richmond R. E., De Angelo A. B., Daniel F. B., Lindahl R. Immunohistochemical detection of tumour-associated aldehyde dehydrogenase in formalin-fixed rat and mouse normal liver and hepatomas. Histochem J. 1990 Oct;22(10):526–529. doi: 10.1007/BF01005974. [DOI] [PubMed] [Google Scholar]
- Richmond R. E., DeAngelo A. B., Potter C. L., Daniel F. B. The role of hyperplastic nodules in dichloroacetic acid-induced hepatocarcinogenesis in B6C3F1 male mice. Carcinogenesis. 1991 Aug;12(8):1383–1387. doi: 10.1093/carcin/12.8.1383. [DOI] [PubMed] [Google Scholar]
- Samiec P. S., Dahm L. J., Jones D. P. Glutathione S-transferase in mucus of rat small intestine. Toxicol Sci. 2000 Mar;54(1):52–59. doi: 10.1093/toxsci/54.1.52. [DOI] [PubMed] [Google Scholar]
- Sanchez I. M., Bull R. J. Early induction of reparative hyperplasia in the liver of B6C3F1 mice treated with dichloroacetate and trichloroacetate. Toxicology. 1990 Oct;64(1):33–46. doi: 10.1016/0300-483x(90)90097-z. [DOI] [PubMed] [Google Scholar]
- Snyder R. D., Pullman J., Carter J. H., Carter H. W., DeAngelo A. B. In vivo administration of dichloroacetic acid suppresses spontaneous apoptosis in murine hepatocytes. Cancer Res. 1995 Sep 1;55(17):3702–3705. [PubMed] [Google Scholar]
- Stacpoole P. W., Moore G. W., Kornhauser D. M. Metabolic effects of dichloroacetate in patients with diabetes mellitus and hyperlipoproteinemia. N Engl J Med. 1978 Mar 9;298(10):526–530. doi: 10.1056/NEJM197803092981002. [DOI] [PubMed] [Google Scholar]
- Stauber A. J., Bull R. J. Differences in phenotype and cell replicative behavior of hepatic tumors induced by dichloroacetate (DCA) and trichloroacetate (TCA). Toxicol Appl Pharmacol. 1997 Jun;144(2):235–246. doi: 10.1006/taap.1997.8159. [DOI] [PubMed] [Google Scholar]
- Stauber A. J., Bull R. J., Thrall B. D. Dichloroacetate and trichloroacetate promote clonal expansion of anchorage-independent hepatocytes in vivo and in vitro. Toxicol Appl Pharmacol. 1998 Jun;150(2):287–294. doi: 10.1006/taap.1998.8417. [DOI] [PubMed] [Google Scholar]