Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 2003 Feb;111(2):139–145. doi: 10.1289/ehp.5658

Mechanisms of phthalate ester toxicity in the female reproductive system.

Tara Lovekamp-Swan 1, Barbara J Davis 1
PMCID: PMC1241340  PMID: 12573895

Abstract

Phthalates are high-production-volume synthetic chemicals with ubiquitous human exposures because of their use in plastics and other common consumer products. Recent epidemiologic evidence suggests that women have a unique exposure profile to phthalates, which raises concern about the potential health hazards posed by such exposures. Research in our laboratory examines how phthalates interact with the female reproductive system in animal models to provide insights into the potential health effects of these chemicals in women. Here we review our work and the work of others studying these mechanisms and propose a model for the ovarian action of di-(2-ethylhexyl) phthalate (DEHP). In vivo, DEHP (2 g/kg) causes decreased serum estradiol levels, prolonged estrous cycles, and no ovulations in adult, cycling rats. In vitro, monoethylhexyl phthalate (MEHP; the active metabolite of DEHP) decreases granulosa cell aromatase RNA message and protein levels in a dose-dependent manner. MEHP is unique among the phthalates in its suppression of aromatase and in its ability to activate peroxisome proliferator-activated receptors (PPARs). We hypothesize that MEHP activates the PPARs to suppress aromatase in the granulosa cell. MEHP-, PPAR alpha-, and PPAR gamma-specific ligands all similarly decreased estradiol production and RNA message levels of aromatase in vitro. Our model shows that MEHP acts on the granulosa cell by decreasing cAMP stimulated by follicle stimulating hormone and by activating the PPARs, which leads to decreased aromatase transcription. Thus, the environmental contaminant DEHP, through its metabolite MEHP, acts through a receptor-mediated signaling pathway to suppress estradiol production in the ovary, leading to anovulation.

Full Text

The Full Text of this article is available as a PDF (189.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aldyreva M. V., Klimova T. S., Iziumova A. S., Timofeevskaia L. A. Vliianie ftalatnykh plastifikatorov na generativnyiu funkstsiiu. Gig Tr Prof Zabol. 1975 Dec;(12):25–29. [PubMed] [Google Scholar]
  2. Arcadi F. A., Costa C., Imperatore C., Marchese A., Rapisarda A., Salemi M., Trimarchi G. R., Costa G. Oral toxicity of bis(2-ethylhexyl) phthalate during pregnancy and suckling in the Long-Evans rat. Food Chem Toxicol. 1998 Nov;36(11):963–970. doi: 10.1016/s0278-6915(98)00065-9. [DOI] [PubMed] [Google Scholar]
  3. Blount B. C., Milgram K. E., Silva M. J., Malek N. A., Reidy J. A., Needham L. L., Brock J. W. Quantitative detection of eight phthalate metabolites in human urine using HPLC-APCI-MS/MS. Anal Chem. 2000 Sep 1;72(17):4127–4134. doi: 10.1021/ac000422r. [DOI] [PubMed] [Google Scholar]
  4. Blount B. C., Silva M. J., Caudill S. P., Needham L. L., Pirkle J. L., Sampson E. J., Lucier G. W., Jackson R. J., Brock J. W. Levels of seven urinary phthalate metabolites in a human reference population. Environ Health Perspect. 2000 Oct;108(10):979–982. doi: 10.1289/ehp.00108979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Braissant O., Foufelle F., Scotto C., Dauça M., Wahli W. Differential expression of peroxisome proliferator-activated receptors (PPARs): tissue distribution of PPAR-alpha, -beta, and -gamma in the adult rat. Endocrinology. 1996 Jan;137(1):354–366. doi: 10.1210/endo.137.1.8536636. [DOI] [PubMed] [Google Scholar]
  6. Colón I., Caro D., Bourdony C. J., Rosario O. Identification of phthalate esters in the serum of young Puerto Rican girls with premature breast development. Environ Health Perspect. 2000 Sep;108(9):895–900. doi: 10.1289/ehp.108-2556932. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Corton J. C., Anderson S. P., Stauber A. Central role of peroxisome proliferator-activated receptors in the actions of peroxisome proliferators. Annu Rev Pharmacol Toxicol. 2000;40:491–518. doi: 10.1146/annurev.pharmtox.40.1.491. [DOI] [PubMed] [Google Scholar]
  8. Corton J. C., Bocos C., Moreno E. S., Merritt A., Cattley R. C., Gustafsson J. A. Peroxisome proliferators alter the expression of estrogen-metabolizing enzymes. Biochimie. 1997 Feb-Mar;79(2-3):151–162. doi: 10.1016/s0300-9084(97)81508-8. [DOI] [PubMed] [Google Scholar]
  9. Daniel S. A., Armstrong D. T. Enhancement of follicle-stimulating hormone-induced aromatase activity by androgens in cultured rat granulosa cells. Endocrinology. 1980 Oct;107(4):1027–1033. doi: 10.1210/endo-107-4-1027. [DOI] [PubMed] [Google Scholar]
  10. Davis B. J., Maronpot R. R., Heindel J. J. Di-(2-ethylhexyl) phthalate suppresses estradiol and ovulation in cycling rats. Toxicol Appl Pharmacol. 1994 Oct;128(2):216–223. doi: 10.1006/taap.1994.1200. [DOI] [PubMed] [Google Scholar]
  11. Davis B. J., Weaver R., Gaines L. J., Heindel J. J. Mono-(2-ethylhexyl) phthalate suppresses estradiol production independent of FSH-cAMP stimulation in rat granulosa cells. Toxicol Appl Pharmacol. 1994 Oct;128(2):224–228. doi: 10.1006/taap.1994.1201. [DOI] [PubMed] [Google Scholar]
  12. Dunaif A., Scott D., Finegood D., Quintana B., Whitcomb R. The insulin-sensitizing agent troglitazone improves metabolic and reproductive abnormalities in the polycystic ovary syndrome. J Clin Endocrinol Metab. 1996 Sep;81(9):3299–3306. doi: 10.1210/jcem.81.9.8784087. [DOI] [PubMed] [Google Scholar]
  13. Erickson G. F. Primary cultures of ovarian cells in serum-free medium as models of hormone-dependent differentiation. Mol Cell Endocrinol. 1983 Jan;29(1):21–49. doi: 10.1016/0303-7207(83)90003-5. [DOI] [PubMed] [Google Scholar]
  14. Fan L. Q., Cattley R. C., Corton J. C. Tissue-specific induction of 17 beta-hydroxysteroid dehydrogenase type IV by peroxisome proliferator chemicals is dependent on the peroxisome proliferator-activated receptor alpha. J Endocrinol. 1998 Aug;158(2):237–246. doi: 10.1677/joe.0.1580237. [DOI] [PubMed] [Google Scholar]
  15. Fitzpatrick S. L., Carlone D. L., Robker R. L., Richards J. S. Expression of aromatase in the ovary: down-regulation of mRNA by the ovulatory luteinizing hormone surge. Steroids. 1997 Jan;62(1):197–206. doi: 10.1016/s0039-128x(96)00181-x. [DOI] [PubMed] [Google Scholar]
  16. Foster P. M., Thomas L. V., Cook M. W., Gangolli S. D. Study of the testicular effects and changes in zinc excretion produced by some n-alkyl phthalates in the rat. Toxicol Appl Pharmacol. 1980 Jul;54(3):392–398. doi: 10.1016/0041-008x(80)90165-9. [DOI] [PubMed] [Google Scholar]
  17. Gonzalez-Robayna I. J., Alliston T. N., Buse P., Firestone G. L., Richards J. S. Functional and subcellular changes in the A-kinase-signaling pathway: relation to aromatase and Sgk expression during the transition of granulosa cells to luteal cells. Mol Endocrinol. 1999 Aug;13(8):1318–1337. doi: 10.1210/mend.13.8.0334. [DOI] [PubMed] [Google Scholar]
  18. Grasso P., Heindel J. J., Powell C. J., Reichert L. E., Jr Effects of mono(2-ethylhexyl) phthalate, a testicular toxicant, on follicle-stimulating hormone binding to membranes from cultured rat Sertoli cells. Biol Reprod. 1993 Mar;48(3):454–459. doi: 10.1095/biolreprod48.3.454. [DOI] [PubMed] [Google Scholar]
  19. Heindel J. J., Gulati D. K., Mounce R. C., Russell S. R., Lamb J. C., 4th Reproductive toxicity of three phthalic acid esters in a continuous breeding protocol. Fundam Appl Toxicol. 1989 Apr;12(3):508–518. doi: 10.1016/0272-0590(89)90024-9. [DOI] [PubMed] [Google Scholar]
  20. Heindel J. J., Powell C. J. Phthalate ester effects on rat Sertoli cell function in vitro: effects of phthalate side chain and age of animal. Toxicol Appl Pharmacol. 1992 Jul;115(1):116–123. doi: 10.1016/0041-008x(92)90374-2. [DOI] [PubMed] [Google Scholar]
  21. Hillier S. G., De Zwart F. A. Evidence that granulosa cell aromatase induction/activation by follicle-stimulating hormone is an androgen receptor-regulated process in-vitro. Endocrinology. 1981 Oct;109(4):1303–1305. doi: 10.1210/endo-109-4-1303. [DOI] [PubMed] [Google Scholar]
  22. Hsueh A. J., Adashi E. Y., Jones P. B., Welsh T. H., Jr Hormonal regulation of the differentiation of cultured ovarian granulosa cells. Endocr Rev. 1984 Winter;5(1):76–127. doi: 10.1210/edrv-5-1-76. [DOI] [PubMed] [Google Scholar]
  23. Kaikaus R. M., Chan W. K., Ortiz de Montellano P. R., Bass N. M. Mechanisms of regulation of liver fatty acid-binding protein. Mol Cell Biochem. 1993 Jun 9;123(1-2):93–100. doi: 10.1007/BF01076479. [DOI] [PubMed] [Google Scholar]
  24. Kanda T., Ono T., Matsubara Y., Muto T. Possible role of rat fatty acid-binding proteins in the intestine as carriers of phenol and phthalate derivatives. Biochem Biophys Res Commun. 1990 May 16;168(3):1053–1058. doi: 10.1016/0006-291x(90)91136-g. [DOI] [PubMed] [Google Scholar]
  25. Kaul A. F., Souney P. F., Osathanondh R. A review of possible toxicity of di-2-ethylhexylphthalate (DEHP) in plastic intravenous containers: effects on reproduction. Drug Intell Clin Pharm. 1982 Sep;16(9):689–692. doi: 10.1177/106002808201600908. [DOI] [PubMed] [Google Scholar]
  26. Komar C. M., Braissant O., Wahli W., Curry T. E., Jr Expression and localization of PPARs in the rat ovary during follicular development and the periovulatory period. Endocrinology. 2001 Nov;142(11):4831–4838. doi: 10.1210/endo.142.11.8429. [DOI] [PubMed] [Google Scholar]
  27. Lamb J. C., 4th, Chapin R. E., Teague J., Lawton A. D., Reel J. R. Reproductive effects of four phthalic acid esters in the mouse. Toxicol Appl Pharmacol. 1987 Apr;88(2):255–269. doi: 10.1016/0041-008x(87)90011-1. [DOI] [PubMed] [Google Scholar]
  28. Lambe K. G., Tugwood J. D. A human peroxisome-proliferator-activated receptor-gamma is activated by inducers of adipogenesis, including thiazolidinedione drugs. Eur J Biochem. 1996 Jul 1;239(1):1–7. doi: 10.1111/j.1432-1033.1996.0001u.x. [DOI] [PubMed] [Google Scholar]
  29. Laskey J. W., Berman E. Steroidogenic assessment using ovary culture in cycling rats: effects of bis(2-diethylhexyl)phthalate on ovarian steroid production. Reprod Toxicol. 1993;7(1):25–33. doi: 10.1016/0890-6238(93)90006-s. [DOI] [PubMed] [Google Scholar]
  30. Liu Y. X., Hsueh A. J. Synergism between granulosa and theca-interstitial cells in estrogen biosynthesis by gonadotropin-treated rat ovaries: studies on the two-cell, two-gonadotropin hypothesis using steroid antisera. Biol Reprod. 1986 Aug;35(1):27–36. doi: 10.1095/biolreprod35.1.27. [DOI] [PubMed] [Google Scholar]
  31. Lovekamp T. N., Davis B. J. Mono-(2-ethylhexyl) phthalate suppresses aromatase transcript levels and estradiol production in cultured rat granulosa cells. Toxicol Appl Pharmacol. 2001 May 1;172(3):217–224. doi: 10.1006/taap.2001.9156. [DOI] [PubMed] [Google Scholar]
  32. Maloney E. K., Waxman D. J. trans-Activation of PPARalpha and PPARgamma by structurally diverse environmental chemicals. Toxicol Appl Pharmacol. 1999 Dec 1;161(2):209–218. doi: 10.1006/taap.1999.8809. [DOI] [PubMed] [Google Scholar]
  33. Moore R. W., Rudy T. A., Lin T. M., Ko K., Peterson R. E. Abnormalities of sexual development in male rats with in utero and lactational exposure to the antiandrogenic plasticizer Di(2-ethylhexyl) phthalate. Environ Health Perspect. 2001 Mar;109(3):229–237. doi: 10.1289/ehp.01109229. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Mu Y. M., Yanase T., Nishi Y., Takayanagi R., Goto K., Nawata H. Combined treatment with specific ligands for PPARgamma:RXR nuclear receptor system markedly inhibits the expression of cytochrome P450arom in human granulosa cancer cells. Mol Cell Endocrinol. 2001 Jul 5;181(1-2):239–248. doi: 10.1016/s0303-7207(00)00457-3. [DOI] [PubMed] [Google Scholar]
  35. Mu Y. M., Yanase T., Nishi Y., Waseda N., Oda T., Tanaka A., Takayanagi R., Nawata H. Insulin sensitizer, troglitazone, directly inhibits aromatase activity in human ovarian granulosa cells. Biochem Biophys Res Commun. 2000 May 19;271(3):710–713. doi: 10.1006/bbrc.2000.2701. [DOI] [PubMed] [Google Scholar]
  36. Mukherjee R., Jow L., Noonan D., McDonnell D. P. Human and rat peroxisome proliferator activated receptors (PPARs) demonstrate similar tissue distribution but different responsiveness to PPAR activators. J Steroid Biochem Mol Biol. 1994 Nov;51(3-4):157–166. doi: 10.1016/0960-0760(94)90089-2. [DOI] [PubMed] [Google Scholar]
  37. Mylchreest E., Cattley R. C., Foster P. M. Male reproductive tract malformations in rats following gestational and lactational exposure to Di(n-butyl) phthalate: an antiandrogenic mechanism? Toxicol Sci. 1998 May;43(1):47–60. doi: 10.1006/toxs.1998.2436. [DOI] [PubMed] [Google Scholar]
  38. Mylchreest E., Sar M., Cattley R. C., Foster P. M. Disruption of androgen-regulated male reproductive development by di(n-butyl) phthalate during late gestation in rats is different from flutamide. Toxicol Appl Pharmacol. 1999 Apr 15;156(2):81–95. doi: 10.1006/taap.1999.8643. [DOI] [PubMed] [Google Scholar]
  39. Palmer C. N., Hsu M. H., Griffin K. J., Raucy J. L., Johnson E. F. Peroxisome proliferator activated receptor-alpha expression in human liver. Mol Pharmacol. 1998 Jan;53(1):14–22. [PubMed] [Google Scholar]
  40. Parks L. G., Ostby J. S., Lambright C. R., Abbott B. D., Klinefelter G. R., Barlow N. J., Gray L. E., Jr The plasticizer diethylhexyl phthalate induces malformations by decreasing fetal testosterone synthesis during sexual differentiation in the male rat. Toxicol Sci. 2000 Dec;58(2):339–349. doi: 10.1093/toxsci/58.2.339. [DOI] [PubMed] [Google Scholar]
  41. Richards J. S. Maturation of ovarian follicles: actions and interactions of pituitary and ovarian hormones on follicular cell differentiation. Physiol Rev. 1980 Jan;60(1):51–89. doi: 10.1152/physrev.1980.60.1.51. [DOI] [PubMed] [Google Scholar]
  42. Rubin G. L., Zhao Y., Kalus A. M., Simpson E. R. Peroxisome proliferator-activated receptor gamma ligands inhibit estrogen biosynthesis in human breast adipose tissue: possible implications for breast cancer therapy. Cancer Res. 2000 Mar 15;60(6):1604–1608. [PubMed] [Google Scholar]
  43. Schoppee Pamela D., Garmey James C., Veldhuis Johannes D. Putative activation of the peroxisome proliferator-activated receptor gamma impairs androgen and enhances progesterone biosynthesis in primary cultures of porcine theca cells. Biol Reprod. 2002 Jan;66(1):190–198. doi: 10.1095/biolreprod66.1.190. [DOI] [PubMed] [Google Scholar]
  44. Shiota K., Nishimura H. Teratogenicity of di(2-ethylhexyl) phthalate (DEHP) and di-n-butyl phthalate (DBP) in mice. Environ Health Perspect. 1982 Nov;45:65–70. doi: 10.1289/ehp.824565. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Tickner J. A., Schettler T., Guidotti T., McCally M., Rossi M. Health risks posed by use of Di-2-ethylhexyl phthalate (DEHP) in PVC medical devices: a critical review. Am J Ind Med. 2001 Jan;39(1):100–111. doi: 10.1002/1097-0274(200101)39:1<100::aid-ajim10>3.0.co;2-q. [DOI] [PubMed] [Google Scholar]
  46. Tomita I., Nakamura Y., Yagi Y., Tutikawa K. Fetotoxic effects of mono-2-ethylhexyl phthalate (MEHP) in mice. Environ Health Perspect. 1986 Mar;65:249–254. doi: 10.1289/ehp.8665249. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Treinen K. A., Dodson W. C., Heindel J. J. Inhibition of FSH-stimulated cAMP accumulation and progesterone production by mono(2-ethylhexyl) phthalate in rat granulosa cell cultures. Toxicol Appl Pharmacol. 1990 Nov;106(2):334–340. doi: 10.1016/0041-008x(90)90252-p. [DOI] [PubMed] [Google Scholar]
  48. Tyl R. W., Price C. J., Marr M. C., Kimmel C. A. Developmental toxicity evaluation of dietary di(2-ethylhexyl)phthalate in Fischer 344 rats and CD-1 mice. Fundam Appl Toxicol. 1988 Apr;10(3):395–412. doi: 10.1016/0272-0590(88)90286-2. [DOI] [PubMed] [Google Scholar]
  49. Ward J. M., Peters J. M., Perella C. M., Gonzalez F. J. Receptor and nonreceptor-mediated organ-specific toxicity of di(2-ethylhexyl)phthalate (DEHP) in peroxisome proliferator-activated receptor alpha-null mice. Toxicol Pathol. 1998 Mar-Apr;26(2):240–246. doi: 10.1177/019262339802600208. [DOI] [PubMed] [Google Scholar]
  50. Willson T. M., Lambert M. H., Kliewer S. A. Peroxisome proliferator-activated receptor gamma and metabolic disease. Annu Rev Biochem. 2001;70:341–367. doi: 10.1146/annurev.biochem.70.1.341. [DOI] [PubMed] [Google Scholar]
  51. Wolf C., Jr, Lambright C., Mann P., Price M., Cooper R. L., Ostby J., Gray L. E., Jr Administration of potentially antiandrogenic pesticides (procymidone, linuron, iprodione, chlozolinate, p,p'-DDE, and ketoconazole) and toxic substances (dibutyl- and diethylhexyl phthalate, PCB 169, and ethane dimethane sulphonate) during sexual differentiation produces diverse profiles of reproductive malformations in the male rat. Toxicol Ind Health. 1999 Jan-Mar;15(1-2):94–118. doi: 10.1177/074823379901500109. [DOI] [PubMed] [Google Scholar]
  52. Wolfrum C., Borrmann C. M., Borchers T., Spener F. Fatty acids and hypolipidemic drugs regulate peroxisome proliferator-activated receptors alpha - and gamma-mediated gene expression via liver fatty acid binding protein: a signaling path to the nucleus. Proc Natl Acad Sci U S A. 2001 Feb 20;98(5):2323–2328. doi: 10.1073/pnas.051619898. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Xu H. E., Lambert M. H., Montana V. G., Parks D. J., Blanchard S. G., Brown P. J., Sternbach D. D., Lehmann J. M., Wisely G. B., Willson T. M. Molecular recognition of fatty acids by peroxisome proliferator-activated receptors. Mol Cell. 1999 Mar;3(3):397–403. doi: 10.1016/s1097-2765(00)80467-0. [DOI] [PubMed] [Google Scholar]
  54. Zacharewski T. R., Meek M. D., Clemons J. H., Wu Z. F., Fielden M. R., Matthews J. B. Examination of the in vitro and in vivo estrogenic activities of eight commercial phthalate esters. Toxicol Sci. 1998 Dec;46(2):282–293. doi: 10.1006/toxs.1998.2505. [DOI] [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES