Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 2003 Feb;111(2):147–150. doi: 10.1289/ehp.5464

Effects of concentrated ambient particles on heart rate and blood pressure in pulmonary hypertensive rats.

Tsun-Jen Cheng 1, Jing-Shiang Hwang 1, Peng-Yau Wang 1, Chia-Fang Tsai 1, Chun-Yen Chen 1, Sheng-Hsiang Lin 1, Chang-Chuan Chan 1
PMCID: PMC1241341  PMID: 12573896

Abstract

Epidemiologic studies have shown that increased concentrations of ambient particles are associated with cardiovascular morbidity and mortality. However, the exact mechanisms remain unclear. Recent studies have revealed that particulate air pollution exposure is associated with indicators of autonomic function including heart rate, blood pressure, and heart rate variability. However, this association has not been clearly demonstrated in animal studies. To overcome the problems of wide variations in diseased animals and circadian cycles, we adopted a novel approach using a mixed-effects model to investigate whether ambient particle exposure was associated with changes in heart rate and blood pressure in pulmonary hypertensive rats. Male Sprague-Dawley rats were implanted with radiotelemetry devices and exposed to concentrated ambient particles generated by an air particle concentrator. The rats were held in nose-only exposure chambers for 6 hr per day for 3 consecutive days and then rested for 4 days in each week during the experimental period of 5 weeks. These animals were exposed to concentrated particles during weeks 2, 3, and 4 and exposed to filtered air during weeks 1 and 5. The particle concentrations for tested animals ranged between 108 and 338 micro g/m(3). Statistical analysis using mixed-effects models revealed that entry and exit of exposure chamber and particle exposure were associated with changes in heart rate and mean blood pressure. Immediately after particle exposure, the hourly averaged heart rate decreased and reached the lowest at the first and second hour of exposure for a decrease of 14.9 (p < 0.01) and 11.7 (p = 0.01) beats per minute, respectively. The hourly mean blood pressure also decreased after the particle exposure, with a maximal decrease of 3.3 (p < 0.01) and 4.1 (p < 0.01) mm Hg at the first and second hour of exposure. Our results indicate that ambient particles might influence blood pressure and heart rate.

Full Text

The Full Text of this article is available as a PDF (123.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amdur M. O., Chen L. C. Furnace-generated acid aerosols: speciation and pulmonary effects. Environ Health Perspect. 1989 Feb;79:147–150. doi: 10.1289/ehp.8979147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Costa D. L., Dreher K. L. Bioavailable transition metals in particulate matter mediate cardiopulmonary injury in healthy and compromised animal models. Environ Health Perspect. 1997 Sep;105 (Suppl 5):1053–1060. doi: 10.1289/ehp.97105s51053. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Donaldson K., Brown D. M., Mitchell C., Dineva M., Beswick P. H., Gilmour P., MacNee W. Free radical activity of PM10: iron-mediated generation of hydroxyl radicals. Environ Health Perspect. 1997 Sep;105 (Suppl 5):1285–1289. doi: 10.1289/ehp.97105s51285. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Dreher K. L., Jaskot R. H., Lehmann J. R., Richards J. H., McGee J. K., Ghio A. J., Costa D. L. Soluble transition metals mediate residual oil fly ash induced acute lung injury. J Toxicol Environ Health. 1997 Feb 21;50(3):285–305. [PubMed] [Google Scholar]
  5. Gavett S. H., Madison S. L., Dreher K. L., Winsett D. W., McGee J. K., Costa D. L. Metal and sulfate composition of residual oil fly ash determines airway hyperreactivity and lung injury in rats. Environ Res. 1997 Feb;72(2):162–172. doi: 10.1006/enrs.1997.3732. [DOI] [PubMed] [Google Scholar]
  6. Gold D. R., Litonjua A., Schwartz J., Lovett E., Larson A., Nearing B., Allen G., Verrier M., Cherry R., Verrier R. Ambient pollution and heart rate variability. Circulation. 2000 Mar 21;101(11):1267–1273. doi: 10.1161/01.cir.101.11.1267. [DOI] [PubMed] [Google Scholar]
  7. Gordon T., Nadziejko C., Schlesinger R., Chen L. C. Pulmonary and cardiovascular effects of acute exposure to concentrated ambient particulate matter in rats. Toxicol Lett. 1998 Aug;96-97:285–288. doi: 10.1016/s0378-4274(98)00084-8. [DOI] [PubMed] [Google Scholar]
  8. Ibald-Mulli A., Stieber J., Wichmann H. E., Koenig W., Peters A. Effects of air pollution on blood pressure: a population-based approach. Am J Public Health. 2001 Apr;91(4):571–577. doi: 10.2105/ajph.91.4.571. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Johnston C. J., Finkelstein J. N., Gelein R., Baggs R., Oberdörster G. Characterization of the early pulmonary inflammatory response associated with PTFE fume exposure. Toxicol Appl Pharmacol. 1996 Sep;140(1):154–163. doi: 10.1006/taap.1996.0208. [DOI] [PubMed] [Google Scholar]
  10. Kodavanti U. P., Costa D. L., Bromberg P. A. Rodent models of cardiopulmonary disease: their potential applicability in studies of air pollutant susceptibility. Environ Health Perspect. 1998 Feb;106 (Suppl 1):111–130. doi: 10.1289/ehp.98106s1111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kou Y. R., Lai C. J., Hsu T. H., Lin Y. S. Involvement of hydroxyl radical in the immediate ventilatory responses to inhaled wood smoke in rats. Respir Physiol. 1997 Jan;107(1):1–13. doi: 10.1016/s0034-5687(96)02507-8. [DOI] [PubMed] [Google Scholar]
  12. Lai C. J., Kou Y. R. Stimulation of vagal pulmonary C fibers by inhaled wood smoke in rats. J Appl Physiol (1985) 1998 Jan;84(1):30–36. doi: 10.1152/jappl.1998.84.1.30. [DOI] [PubMed] [Google Scholar]
  13. Lee L. Y., Widdicombe J. G. Modulation of airway sensitivity to inhaled irritants: role of inflammatory mediators. Environ Health Perspect. 2001 Aug;109 (Suppl 4):585–589. doi: 10.1289/ehp.01109s4585. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Liao D., Creason J., Shy C., Williams R., Watts R., Zweidinger R. Daily variation of particulate air pollution and poor cardiac autonomic control in the elderly. Environ Health Perspect. 1999 Jul;107(7):521–525. doi: 10.1289/ehp.99107521. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Monn C., Becker S. Cytotoxicity and induction of proinflammatory cytokines from human monocytes exposed to fine (PM2.5) and coarse particles (PM10-2.5) in outdoor and indoor air. Toxicol Appl Pharmacol. 1999 Mar 15;155(3):245–252. doi: 10.1006/taap.1998.8591. [DOI] [PubMed] [Google Scholar]
  16. Oberdörster G., Finkelstein J., Ferin J., Godleski J., Chang L. Y., Gelein R., Johnston C., Crapo J. D. Ultrafine particles as a potential environmental health hazard. Studies with model particles. Chest. 1996 Mar;109(3 Suppl):68S–69S. doi: 10.1378/chest.109.3_supplement.68s. [DOI] [PubMed] [Google Scholar]
  17. Peters A., Perz S., Döring A., Stieber J., Koenig W., Wichmann H. E. Increases in heart rate during an air pollution episode. Am J Epidemiol. 1999 Nov 15;150(10):1094–1098. doi: 10.1093/oxfordjournals.aje.a009934. [DOI] [PubMed] [Google Scholar]
  18. Pope CA3rd, Dockery D. W., Kanner R. E., Villegas G. M., Schwartz J. Oxygen saturation, pulse rate, and particulate air pollution: A daily time-series panel study. Am J Respir Crit Care Med. 1999 Feb;159(2):365–372. doi: 10.1164/ajrccm.159.2.9702103. [DOI] [PubMed] [Google Scholar]
  19. Pope C. A., 3rd, Thun M. J., Namboodiri M. M., Dockery D. W., Evans J. S., Speizer F. E., Heath C. W., Jr Particulate air pollution as a predictor of mortality in a prospective study of U.S. adults. Am J Respir Crit Care Med. 1995 Mar;151(3 Pt 1):669–674. doi: 10.1164/ajrccm/151.3_Pt_1.669. [DOI] [PubMed] [Google Scholar]
  20. Pope C. A., 3rd, Verrier R. L., Lovett E. G., Larson A. C., Raizenne M. E., Kanner R. E., Schwartz J., Villegas G. M., Gold D. R., Dockery D. W. Heart rate variability associated with particulate air pollution. Am Heart J. 1999 Nov;138(5 Pt 1):890–899. doi: 10.1016/s0002-8703(99)70014-1. [DOI] [PubMed] [Google Scholar]
  21. Prahalad A. K., Soukup J. M., Inmon J., Willis R., Ghio A. J., Becker S., Gallagher J. E. Ambient air particles: effects on cellular oxidant radical generation in relation to particulate elemental chemistry. Toxicol Appl Pharmacol. 1999 Jul 15;158(2):81–91. doi: 10.1006/taap.1999.8701. [DOI] [PubMed] [Google Scholar]
  22. Reindel J. F., Ganey P. E., Wagner J. G., Slocombe R. F., Roth R. A. Development of morphologic, hemodynamic, and biochemical changes in lungs of rats given monocrotaline pyrrole. Toxicol Appl Pharmacol. 1990 Nov;106(2):179–200. doi: 10.1016/0041-008x(90)90239-q. [DOI] [PubMed] [Google Scholar]
  23. Samet J. M., Dominici F., Curriero F. C., Coursac I., Zeger S. L. Fine particulate air pollution and mortality in 20 U.S. cities, 1987-1994. N Engl J Med. 2000 Dec 14;343(24):1742–1749. doi: 10.1056/NEJM200012143432401. [DOI] [PubMed] [Google Scholar]
  24. Stone P. H., Godleski J. J. First steps toward understanding the pathophysiologic link between air pollution and cardiac mortality. Am Heart J. 1999 Nov;138(5 Pt 1):804–807. doi: 10.1016/s0002-8703(99)70002-5. [DOI] [PubMed] [Google Scholar]
  25. Thurston G. D., Ito K., Hayes C. G., Bates D. V., Lippmann M. Respiratory hospital admissions and summertime haze air pollution in Toronto, Ontario: consideration of the role of acid aerosols. Environ Res. 1994 May;65(2):271–290. doi: 10.1006/enrs.1994.1037. [DOI] [PubMed] [Google Scholar]
  26. Watkinson W. P., Campen M. J., Costa D. L. Cardiac arrhythmia induction after exposure to residual oil fly ash particles in a rodent model of pulmonary hypertension. Toxicol Sci. 1998 Feb;41(2):209–216. doi: 10.1006/toxs.1997.2406. [DOI] [PubMed] [Google Scholar]
  27. Watkinson W. P., Campen M. J., Nolan J. P., Costa D. L. Cardiovascular and systemic responses to inhaled pollutants in rodents: effects of ozone and particulate matter. Environ Health Perspect. 2001 Aug;109 (Suppl 4):539–546. doi: 10.1289/ehp.01109s4539. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES