Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 2003 Feb;111(2):161–166. doi: 10.1289/ehp.111-1241344

Personal PM2.5 exposure and markers of oxidative stress in blood.

Mette Sørensen 1, Bahram Daneshvar 1, Max Hansen 1, Lars O Dragsted 1, Ole Hertel 1, Lisbeth Knudsen 1, Steffen Loft 1
PMCID: PMC1241344  PMID: 12573899

Abstract

Ambient particulate air pollution assessed as outdoor concentrations of particulate matter less than or equal to 2.5 micro m in diameter (PM(2.5)) in urban background has been associated with cardiovascular diseases at the population level. However, the significance of individual exposure and the involved mechanisms remain uncertain. We measured personal PM(2.5) and carbon black exposure in 50 students four times in 1 year and analyzed blood samples for markers of protein and lipid oxidation, for red blood cell (RBC) and platelet counts, and for concentrations of hemoglobin and fibrinogen. We analyzed protein oxidation in terms of gamma-glutamyl semialdehyde in hemoglobin (HBGGS) and 2-aminoadipic semialdehyde in hemoglobin (HBAAS) and plasma proteins (PLAAS), and lipid peroxidation was measured as malondialdehyde (MDA) in plasma. Median exposures were 16.1 micro g/m(3) for personal PM(2.5) exposure, 9.2 micro g/m(3) for background PM(2.5) concentration, and 8.1 X 10(-6)/m for personal carbon black exposure. Personal carbon black exposure and PLAAS concentration were positively associated (p < 0.01), whereas an association between personal PM(2.5) exposure and PLAAS was only of borderline significance (p = 0.061). A 3.7% increase in MDA concentrations per 10 micro g/m(3) increase in personal PM(2.5) exposure was found for women (p < 0.05), whereas there was no significant relationship for the men. Similarly, positive associations between personal PM(2.5)exposure and both RBC and hemoglobin concentrations were found only in women (p < 0.01). There were no significant relationships between background PM(2.5) concentration and any of the biomarkers. This suggests that exposure to particles in moderate concentrations can induce oxidative stress and increase RBCs in peripheral blood. Personal exposure appears more closely related to these biomarkers potentially related to cardiovascular disease than is ambient PM(2.5) background concentrations.

Full Text

The Full Text of this article is available as a PDF (313.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Autrup H., Daneshvar B., Dragsted L. O., Gamborg M., Hansen M., Loft S., Okkels H., Nielsen F., Nielsen P. S., Raffn E. Biomarkers for exposure to ambient air pollution--comparison of carcinogen-DNA adduct levels with other exposure markers and markers for oxidative stress. Environ Health Perspect. 1999 Mar;107(3):233–238. doi: 10.1289/ehp.99107233. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Chandel N. S., McClintock D. S., Feliciano C. E., Wood T. M., Melendez J. A., Rodriguez A. M., Schumacker P. T. Reactive oxygen species generated at mitochondrial complex III stabilize hypoxia-inducible factor-1alpha during hypoxia: a mechanism of O2 sensing. J Biol Chem. 2000 Aug 18;275(33):25130–25138. doi: 10.1074/jbc.M001914200. [DOI] [PubMed] [Google Scholar]
  3. Dockery D. W., Pope C. A., 3rd, Xu X., Spengler J. D., Ware J. H., Fay M. E., Ferris B. G., Jr, Speizer F. E. An association between air pollution and mortality in six U.S. cities. N Engl J Med. 1993 Dec 9;329(24):1753–1759. doi: 10.1056/NEJM199312093292401. [DOI] [PubMed] [Google Scholar]
  4. Donaldson K., Brown D. M., Mitchell C., Dineva M., Beswick P. H., Gilmour P., MacNee W. Free radical activity of PM10: iron-mediated generation of hydroxyl radicals. Environ Health Perspect. 1997 Sep;105 (Suppl 5):1285–1289. doi: 10.1289/ehp.97105s51285. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Donaldson K., Stone V., Seaton A., MacNee W. Ambient particle inhalation and the cardiovascular system: potential mechanisms. Environ Health Perspect. 2001 Aug;109 (Suppl 4):523–527. doi: 10.1289/ehp.01109s4523. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Ghio A. J., Kim C., Devlin R. B. Concentrated ambient air particles induce mild pulmonary inflammation in healthy human volunteers. Am J Respir Crit Care Med. 2000 Sep;162(3 Pt 1):981–988. doi: 10.1164/ajrccm.162.3.9911115. [DOI] [PubMed] [Google Scholar]
  7. Goldberg M. A., Dunning S. P., Bunn H. F. Regulation of the erythropoietin gene: evidence that the oxygen sensor is a heme protein. Science. 1988 Dec 9;242(4884):1412–1415. doi: 10.1126/science.2849206. [DOI] [PubMed] [Google Scholar]
  8. Han J. Y., Takeshita K., Utsumi H. Noninvasive detection of hydroxyl radical generation in lung by diesel exhaust particles. Free Radic Biol Med. 2001 Mar 1;30(5):516–525. doi: 10.1016/s0891-5849(00)00501-3. [DOI] [PubMed] [Google Scholar]
  9. Jasmin G., Solymoss B. Polycythemia induced in rats by intrarenal injection of nickel sulfide Ni3S2. Proc Soc Exp Biol Med. 1975 Mar;148(3):774–776. doi: 10.3181/00379727-148-38628. [DOI] [PubMed] [Google Scholar]
  10. Koenig W., Ernst E. The possible role of hemorheology in atherothrombogenesis. Atherosclerosis. 1992 Jun;94(2-3):93–107. doi: 10.1016/0021-9150(92)90234-8. [DOI] [PubMed] [Google Scholar]
  11. Lauridsen S. T., Mortensen A. Probucol selectively increases oxidation of atherogenic lipoproteins in cholesterol-fed mice and in Watanabe heritable hyperlipidemic rabbits. Atherosclerosis. 1999 Jan;142(1):169–178. doi: 10.1016/s0021-9150(98)00234-2. [DOI] [PubMed] [Google Scholar]
  12. Li X. Y., Gilmour P. S., Donaldson K., MacNee W. In vivo and in vitro proinflammatory effects of particulate air pollution (PM10). Environ Health Perspect. 1997 Sep;105 (Suppl 5):1279–1283. doi: 10.1289/ehp.97105s51279. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Lowe G. D., Lee A. J., Rumley A., Price J. F., Fowkes F. G. Blood viscosity and risk of cardiovascular events: the Edinburgh Artery Study. Br J Haematol. 1997 Jan;96(1):168–173. doi: 10.1046/j.1365-2141.1997.8532481.x. [DOI] [PubMed] [Google Scholar]
  14. Ozkaynak H., Xue J., Spengler J., Wallace L., Pellizzari E., Jenkins P. Personal exposure to airborne particles and metals: results from the Particle TEAM study in Riverside, California. J Expo Anal Environ Epidemiol. 1996 Jan-Mar;6(1):57–78. [PubMed] [Google Scholar]
  15. Pekkanen J., Brunner E. J., Anderson H. R., Tiittanen P., Atkinson R. W. Daily concentrations of air pollution and plasma fibrinogen in London. Occup Environ Med. 2000 Dec;57(12):818–822. doi: 10.1136/oem.57.12.818. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Peters A., Dockery D. W., Muller J. E., Mittleman M. A. Increased particulate air pollution and the triggering of myocardial infarction. Circulation. 2001 Jun 12;103(23):2810–2815. doi: 10.1161/01.cir.103.23.2810. [DOI] [PubMed] [Google Scholar]
  17. Peters A., Döring A., Wichmann H. E., Koenig W. Increased plasma viscosity during an air pollution episode: a link to mortality? Lancet. 1997 May 31;349(9065):1582–1587. doi: 10.1016/S0140-6736(97)01211-7. [DOI] [PubMed] [Google Scholar]
  18. Pope C. Arden, 3rd, Burnett Richard T., Thun Michael J., Calle Eugenia E., Krewski Daniel, Ito Kazuhiko, Thurston George D. Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. JAMA. 2002 Mar 6;287(9):1132–1141. doi: 10.1001/jama.287.9.1132. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Prahalad A. K., Inmon J., Dailey L. A., Madden M. C., Ghio A. J., Gallagher J. E. Air pollution particles mediated oxidative DNA base damage in a cell free system and in human airway epithelial cells in relation to particulate metal content and bioreactivity. Chem Res Toxicol. 2001 Jul;14(7):879–887. doi: 10.1021/tx010022e. [DOI] [PubMed] [Google Scholar]
  20. Salonen J. T., Nyyssönen K., Salonen R., Lakka H. M., Kaikkonen J., Porkkala-Sarataho E., Voutilainen S., Lakka T. A., Rissanen T., Leskinen L. Antioxidant Supplementation in Atherosclerosis Prevention (ASAP) study: a randomized trial of the effect of vitamins E and C on 3-year progression of carotid atherosclerosis. J Intern Med. 2000 Nov;248(5):377–386. doi: 10.1046/j.1365-2796.2000.00752.x. [DOI] [PubMed] [Google Scholar]
  21. Salvi S., Blomberg A., Rudell B., Kelly F., Sandström T., Holgate S. T., Frew A. Acute inflammatory responses in the airways and peripheral blood after short-term exposure to diesel exhaust in healthy human volunteers. Am J Respir Crit Care Med. 1999 Mar;159(3):702–709. doi: 10.1164/ajrccm.159.3.9709083. [DOI] [PubMed] [Google Scholar]
  22. Seaton A., Soutar A., Crawford V., Elton R., McNerlan S., Cherrie J., Watt M., Agius R., Stout R. Particulate air pollution and the blood. Thorax. 1999 Nov;54(11):1027–1032. doi: 10.1136/thx.54.11.1027. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Young J. F., Dragstedt L. O., Haraldsdóttir J., Daneshvar B., Kall M. A., Loft S., Nilsson L., Nielsen S. E., Mayer B., Skibsted L. H. Green tea extract only affects markers of oxidative status postprandially: lasting antioxidant effect of flavonoid-free diet. Br J Nutr. 2002 Apr;87(4):343–355. doi: 10.1079/bjnbjn2002523. [DOI] [PubMed] [Google Scholar]
  24. Young J. F., Nielsen S. E., Haraldsdóttir J., Daneshvar B., Lauridsen S. T., Knuthsen P., Crozier A., Sandström B., Dragsted L. O. Effect of fruit juice intake on urinary quercetin excretion and biomarkers of antioxidative status. Am J Clin Nutr. 1999 Jan;69(1):87–94. doi: 10.1093/ajcn/69.1.87. [DOI] [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES