Abstract
We investigated the metabolic fate of a low dose (25 micro g/kg) of bisphenol A [2,2-bis(4-hydroxy-phenyl)propane] (BPA) injected subcutaneously in CD1 pregnant mice using a tritium-labeled molecule. Analytic methods were developed to allow a radio-chromatographic profiling of BPA residues in excreta and tissues, as well as in mothers' reproductive tracts and fetuses, that contained more than 4% of the administered radioactivity. BPA was extensively metabolized by CD1 mice. Identified metabolite structures included the glucuronic acid conjugate of BPA, several double conjugates, and conjugated methoxylated compounds, demonstrating the formation of potentially reactive intermediates. Fetal radioactivity was associated with unchanged BPA, BPA glucuronide, and a disaccharide conjugate. The latter structure, as well as that of a dehydrated glucuronide conjugate of BPA (a major metabolite isolated from the digestive tract), showed that BPA metabolic routes were far more complex than previously thought. The estrogenicity of the metabolites that were identified but not tested for hormonal activity cannot be ruled out; however, in general, conjugated BPA metabolites have significantly lower potency than that of the parent compound. Thus, these data suggest the parental compound is responsible for the estrogenic effects observed in fetuses exposed to BPA during gestation in this mammalian model.
Full Text
The Full Text of this article is available as a PDF (547.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Arimori K., Nakano M. Drug exsorption from blood into the gastrointestinal tract. Pharm Res. 1998 Mar;15(3):371–376. doi: 10.1023/a:1011959828103. [DOI] [PubMed] [Google Scholar]
- Ashby J., Tinwell H., Haseman J. Lack of effects for low dose levels of bisphenol A and diethylstilbestrol on the prostate gland of CF1 mice exposed in utero. Regul Toxicol Pharmacol. 1999 Oct;30(2 Pt 1):156–166. doi: 10.1006/rtph.1999.1317. [DOI] [PubMed] [Google Scholar]
- Atkinson A., Roy D. In vitro conversion of environmental estrogenic chemical bisphenol A to DNA binding metabolite(s). Biochem Biophys Res Commun. 1995 May 16;210(2):424–433. doi: 10.1006/bbrc.1995.1678. [DOI] [PubMed] [Google Scholar]
- Brotons J. A., Olea-Serrano M. F., Villalobos M., Pedraza V., Olea N. Xenoestrogens released from lacquer coatings in food cans. Environ Health Perspect. 1995 Jun;103(6):608–612. doi: 10.1289/ehp.95103608. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cagen S. Z., Waechter J. M., Jr, Dimond S. S., Breslin W. J., Butala J. H., Jekat F. W., Joiner R. L., Shiotsuka R. N., Veenstra G. E., Harris L. R. Normal reproductive organ development in CF-1 mice following prenatal exposure to bisphenol A. Toxicol Sci. 1999 Jul;50(1):36–44. doi: 10.1093/toxsci/50.1.36. [DOI] [PubMed] [Google Scholar]
- Elsby R., Maggs J. L., Ashby J., Park B. K. Comparison of the modulatory effects of human and rat liver microsomal metabolism on the estrogenicity of bisphenol A: implications for extrapolation to humans. J Pharmacol Exp Ther. 2001 Apr;297(1):103–113. [PubMed] [Google Scholar]
- Fang H., Tong W., Shi L. M., Blair R., Perkins R., Branham W., Hass B. S., Xie Q., Dial S. L., Moland C. L. Structure-activity relationships for a large diverse set of natural, synthetic, and environmental estrogens. Chem Res Toxicol. 2001 Mar;14(3):280–294. doi: 10.1021/tx000208y. [DOI] [PubMed] [Google Scholar]
- Farabollini F., Porrini S., Dessì-Fulgherit F. Perinatal exposure to the estrogenic pollutant bisphenol A affects behavior in male and female rats. Pharmacol Biochem Behav. 1999 Dec;64(4):687–694. doi: 10.1016/s0091-3057(99)00136-7. [DOI] [PubMed] [Google Scholar]
- Feldman D., Krishnan A. Estrogens in unexpected places: possible implications for researchers and consumers. Environ Health Perspect. 1995 Oct;103 (Suppl 7):129–133. doi: 10.1289/ehp.95103s7129. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gupta C. Reproductive malformation of the male offspring following maternal exposure to estrogenic chemicals. Proc Soc Exp Biol Med. 2000 Jun;224(2):61–68. doi: 10.1046/j.1525-1373.2000.22402.x. [DOI] [PubMed] [Google Scholar]
- Gupta C. The role of estrogen receptor, androgen receptor and growth factors in diethylstilbestrol-induced programming of prostate differentiation. Urol Res. 2000 Aug;28(4):223–229. doi: 10.1007/s002400000107. [DOI] [PubMed] [Google Scholar]
- Hiroi H., Tsutsumi O., Momoeda M., Takai Y., Osuga Y., Taketani Y. Differential interactions of bisphenol A and 17beta-estradiol with estrogen receptor alpha (ERalpha) and ERbeta. Endocr J. 1999 Dec;46(6):773–778. doi: 10.1507/endocrj.46.773. [DOI] [PubMed] [Google Scholar]
- Inoue H., Yokota H., Makino T., Yuasa A., Kato S. Bisphenol a glucuronide, a major metabolite in rat bile after liver perfusion. Drug Metab Dispos. 2001 Aug;29(8):1084–1087. [PubMed] [Google Scholar]
- Kaiser J. Endocrine disrupters. Panel cautiously confirms low-dose effects. Science. 2000 Oct 27;290(5492):695–697. doi: 10.1126/science.290.5492.695. [DOI] [PubMed] [Google Scholar]
- Knaak J. B., Sullivan L. J. Metabolism of bisphenol A in the rat. Toxicol Appl Pharmacol. 1966 Mar;8(2):175–184. doi: 10.1016/s0041-008x(66)80001-7. [DOI] [PubMed] [Google Scholar]
- Kubo K., Arai O., Ogata R., Omura M., Hori T., Aou S. Exposure to bisphenol A during the fetal and suckling periods disrupts sexual differentiation of the locus coeruleus and of behavior in the rat. Neurosci Lett. 2001 May 18;304(1-2):73–76. doi: 10.1016/s0304-3940(01)01760-8. [DOI] [PubMed] [Google Scholar]
- Markey C. M., Luque E. H., Munoz De Toro M., Sonnenschein C., Soto A. M. In utero exposure to bisphenol A alters the development and tissue organization of the mouse mammary gland. Biol Reprod. 2001 Oct;65(4):1215–1223. doi: 10.1093/biolreprod/65.4.1215. [DOI] [PubMed] [Google Scholar]
- Markey C. M., Michaelson C. L., Veson E. C., Sonnenschein C., Soto A. M. The mouse uterotrophic assay: a reevaluation of its validity in assessing the estrogenicity of bisphenol A. Environ Health Perspect. 2001 Jan;109(1):55–60. doi: 10.1289/ehp.0110955. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Matthews J. B., Twomey K., Zacharewski T. R. In vitro and in vivo interactions of bisphenol A and its metabolite, bisphenol A glucuronide, with estrogen receptors alpha and beta. Chem Res Toxicol. 2001 Feb;14(2):149–157. doi: 10.1021/tx0001833. [DOI] [PubMed] [Google Scholar]
- Miller R. K., Heckmann M. E., McKenzie R. C. Diethylstilbestrol: placental transfer, metabolism, covalent binding and fetal distribution in the Wistar rat. J Pharmacol Exp Ther. 1982 Feb;220(2):358–365. [PubMed] [Google Scholar]
- Miyazaki T., Kirdani R. Y., Slaunwhite W. R., Jr, Sandberg A. A. Studies on phenolic steroids in human suvjects. XV. Biliary and urinary excretion patterns of estrone. J Clin Endocrinol Metab. 1971 Jul;33(1):128–137. doi: 10.1210/jcem-33-1-128. [DOI] [PubMed] [Google Scholar]
- Nagel S. C., vom Saal F. S., Thayer K. A., Dhar M. G., Boechler M., Welshons W. V. Relative binding affinity-serum modified access (RBA-SMA) assay predicts the relative in vivo bioactivity of the xenoestrogens bisphenol A and octylphenol. Environ Health Perspect. 1997 Jan;105(1):70–76. doi: 10.1289/ehp.9710570. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nakagawa Y., Suzuki T. Metabolism of bisphenol A in isolated rat hepatocytes and oestrogenic activity of a hydroxylated metabolite in MCF-7 human breast cancer cells. Xenobiotica. 2001 Mar;31(3):113–123. doi: 10.1080/00498250110040501. [DOI] [PubMed] [Google Scholar]
- Nakagawa Y., Tayama S. Metabolism and cytotoxicity of bisphenol A and other bisphenols in isolated rat hepatocytes. Arch Toxicol. 2000 Apr;74(2):99–105. doi: 10.1007/s002040050659. [DOI] [PubMed] [Google Scholar]
- Olea N., Pulgar R., Pérez P., Olea-Serrano F., Rivas A., Novillo-Fertrell A., Pedraza V., Soto A. M., Sonnenschein C. Estrogenicity of resin-based composites and sealants used in dentistry. Environ Health Perspect. 1996 Mar;104(3):298–305. doi: 10.1289/ehp.96104298. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Padilla-Banks E., Jefferson W. N., Newbold R. R. The immature mouse is a suitable model for detection of estrogenicity in the uterotropic bioassay. Environ Health Perspect. 2001 Aug;109(8):821–826. doi: 10.1289/ehp.01109821. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pottenger L. H., Domoradzki J. Y., Markham D. A., Hansen S. C., Cagen S. Z., Waechter J. M., Jr The relative bioavailability and metabolism of bisphenol A in rats is dependent upon the route of administration. Toxicol Sci. 2000 Mar;54(1):3–18. doi: 10.1093/toxsci/54.1.3. [DOI] [PubMed] [Google Scholar]
- Rajapakse N., Ong D., Kortenkamp A. Defining the impact of weakly estrogenic chemicals on the action of steroidal estrogens. Toxicol Sci. 2001 Apr;60(2):296–304. doi: 10.1093/toxsci/60.2.296. [DOI] [PubMed] [Google Scholar]
- Ramos J. G., Varayoud J., Sonnenschein C., Soto A. M., Muñoz De Toro M., Luque E. H. Prenatal exposure to low doses of bisphenol A alters the periductal stroma and glandular cell function in the rat ventral prostate. Biol Reprod. 2001 Oct;65(4):1271–1277. doi: 10.1095/biolreprod65.4.1271. [DOI] [PubMed] [Google Scholar]
- Rubin B. S., Murray M. K., Damassa D. A., King J. C., Soto A. M. Perinatal exposure to low doses of bisphenol A affects body weight, patterns of estrous cyclicity, and plasma LH levels. Environ Health Perspect. 2001 Jul;109(7):675–680. doi: 10.1289/ehp.01109675. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Scheline R. R. Metabolism of foreign compounds by gastrointestinal microorganisms. Pharmacol Rev. 1973 Dec;25(4):451–523. [PubMed] [Google Scholar]
- Snyder R. W., Maness S. C., Gaido K. W., Welsch F., Sumner S. C., Fennell T. R. Metabolism and disposition of bisphenol A in female rats. Toxicol Appl Pharmacol. 2000 Nov 1;168(3):225–234. doi: 10.1006/taap.2000.9051. [DOI] [PubMed] [Google Scholar]
- Soto A. M., Chung K. L., Sonnenschein C. The pesticides endosulfan, toxaphene, and dieldrin have estrogenic effects on human estrogen-sensitive cells. Environ Health Perspect. 1994 Apr;102(4):380–383. doi: 10.1289/ehp.94102380. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Soto A. M., Fernandez M. F., Luizzi M. F., Oles Karasko A. S., Sonnenschein C. Developing a marker of exposure to xenoestrogen mixtures in human serum. Environ Health Perspect. 1997 Apr;105 (Suppl 3):647–654. doi: 10.1289/ehp.97105s3647. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Soto A. M., Sonnenschein C. The role of estrogens on the proliferation of human breast tumor cells (MCF-7). J Steroid Biochem. 1985 Jul;23(1):87–94. doi: 10.1016/0022-4731(85)90265-1. [DOI] [PubMed] [Google Scholar]
- Staples C. A., Dorn P. B., Klecka G. M., O'Block S. T., Harris L. R. A review of the environmental fate, effects, and exposures of bisphenol A. Chemosphere. 1998 Apr;36(10):2149–2173. doi: 10.1016/s0045-6535(97)10133-3. [DOI] [PubMed] [Google Scholar]
- Struble C. B. In situ intestinal absorption of 2-chloro-N-isopropylacetanilide (propachlor) and non-biliary excretion of metabolites into the intestinal tract of rats, pigs and chickens. Xenobiotica. 1991 Jan;21(1):85–95. doi: 10.3109/00498259109039453. [DOI] [PubMed] [Google Scholar]
- Takahashi O., Oishi S. Disposition of orally administered 2,2-Bis(4-hydroxyphenyl)propane (Bisphenol A) in pregnant rats and the placental transfer to fetuses. Environ Health Perspect. 2000 Oct;108(10):931–935. doi: 10.1289/ehp.00108931. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Takahashi S., Chi X. J., Yamaguchi Y., Suzuki H., Sugaya S., Kita K., Hiroshima K., Yamamori H., Ichinose M., Suzuki N. Mutagenicity of bisphenol A and its suppression by interferon-alpha in human RSa cells. Mutat Res. 2001 Feb 20;490(2):199–207. doi: 10.1016/s1383-5718(00)00161-3. [DOI] [PubMed] [Google Scholar]
- Tsutsui T., Tamura Y., Suzuki A., Hirose Y., Kobayashi M., Nishimura H., Metzler M., Barrett J. C. Mammalian cell transformation and aneuploidy induced by five bisphenols. Int J Cancer. 2000 Apr 15;86(2):151–154. doi: 10.1002/(sici)1097-0215(20000415)86:2<151::aid-ijc1>3.0.co;2-0. [DOI] [PubMed] [Google Scholar]
- Upmeier A., Degen G. H., Diel P., Michna H., Bolt H. M. Toxicokinetics of bisphenol A in female DA/Han rats after a single i.v. and oral administration. Arch Toxicol. 2000 Oct;74(8):431–436. doi: 10.1007/s002040000144. [DOI] [PubMed] [Google Scholar]
- Welshons W. V., Nagel S. C., Thayer K. A., Judy B. M., Vom Saal F. S. Low-dose bioactivity of xenoestrogens in animals: fetal exposure to low doses of methoxychlor and other xenoestrogens increases adult prostate size in mice. Toxicol Ind Health. 1999 Jan-Mar;15(1-2):12–25. doi: 10.1177/074823379901500103. [DOI] [PubMed] [Google Scholar]
- West R. J., Goodwin P. A., Klecka G. M. Assessment of the ready biodegradability of Bisphenol A. Bull Environ Contam Toxicol. 2001 Jul;67(1):106–112. doi: 10.1007/s001280097. [DOI] [PubMed] [Google Scholar]
- Yamamoto T., Yasuhara A., Shiraishi H., Nakasugi O. Bisphenol A in hazardous waste landfill leachates. Chemosphere. 2001 Feb;42(4):415–418. doi: 10.1016/s0045-6535(00)00079-5. [DOI] [PubMed] [Google Scholar]
- Yokota H., Iwano H., Endo M., Kobayashi T., Inoue H., Ikushiro S., Yuasa A. Glucuronidation of the environmental oestrogen bisphenol A by an isoform of UDP-glucuronosyltransferase, UGT2B1, in the rat liver. Biochem J. 1999 Jun 1;340(Pt 2):405–409. [PMC free article] [PubMed] [Google Scholar]
- Yoo S. D., Shin B. S., Kwack S. J., Lee B. M., Park K. L., Han S. Y., Kim H. S. Pharmacokinetic disposition and tissue distribution of bisphenol A in rats after intravenous administration. J Toxicol Environ Health A. 2000 Sep 29;61(2):131–139. doi: 10.1080/00984100050120415. [DOI] [PubMed] [Google Scholar]
- Yoshihara S., Makishima M., Suzuki N., Ohta S. Metabolic activation of bisphenol A by rat liver S9 fraction. Toxicol Sci. 2001 Aug;62(2):221–227. doi: 10.1093/toxsci/62.2.221. [DOI] [PubMed] [Google Scholar]
- vom Saal F. S., Cooke P. S., Buchanan D. L., Palanza P., Thayer K. A., Nagel S. C., Parmigiani S., Welshons W. V. A physiologically based approach to the study of bisphenol A and other estrogenic chemicals on the size of reproductive organs, daily sperm production, and behavior. Toxicol Ind Health. 1998 Jan-Apr;14(1-2):239–260. doi: 10.1177/074823379801400115. [DOI] [PubMed] [Google Scholar]