Abstract
In this study we examined estrogenic activity of styrene oligomers after metabolic activation by rat liver microsomes. Trans-1,2-diphenylcyclobutane (TCB), cis-1,2-diphenylcyclobutane (CCB), 1,3-diphenylpropane, 2,4-diphenyl-1-butene, 2,4,6-triphenyl-1-hexene, and 1-alpha-phenyl-4ss-(1 -phenylethyl)tetralin were negative in the yeast estrogen screening assay and estrogen reporter assay using estrogen-responsive human breast cancer cell line MCF-7. However, TCB exhibited estrogenic activity after incubation with liver microsomes of phenobarbital-treated rats in the presence of reduced nicotinamide adenine dinucleotide phosphate (NADPH). Minor activity was observed when liver microsomes of untreated or 3-methylcholanthrene-treated rats were used instead of those from phenobarbital-treated rats. CCB, 1,3-diphenylpropane, and 2,4-diphenyl-1-butene also exhibited estrogenic activity after metabolic activation by liver microsomes, but the activity was lower than that of TCB. 2,4,6-Triphenyl-1-hexene and 1-alpha-phenyl-4ss-(1 -phenylethyl)tetralin did not show estrogenic activity after such incubation. When TCB was incubated with liver microsomes of phenobarbital-treated rats in the presence of NADPH, three metabolites were detected by high-performance liquid chromatography (HPLC). One metabolite isolated by HPLC exhibited a significant estrogenic activity. The active metabolite was identified as trans-1-(4-hydroxyphenyl)-2-phenylcyclobutane by mass and nuclear magnetic resonance spectral analysis. These results suggest that the estrogenic activity of TCB was caused by the formation of the 4-hydroxylated metabolite.
Full Text
The Full Text of this article is available as a PDF (273.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Andersen H. R., Andersson A. M., Arnold S. F., Autrup H., Barfoed M., Beresford N. A., Bjerregaard P., Christiansen L. B., Gissel B., Hummel R. Comparison of short-term estrogenicity tests for identification of hormone-disrupting chemicals. Environ Health Perspect. 1999 Feb;107 (Suppl 1):89–108. doi: 10.1289/ehp.99107s189. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Anstead G. M., Carlson K. E., Katzenellenbogen J. A. The estradiol pharmacophore: ligand structure-estrogen receptor binding affinity relationships and a model for the receptor binding site. Steroids. 1997 Mar;62(3):268–303. doi: 10.1016/s0039-128x(96)00242-5. [DOI] [PubMed] [Google Scholar]
- Bachmann S., Hellwig J., Jäckh R., Christian M. S. Uterotrophic assay of two concentrations of migrates from each of 23 polystyrenes administered orally (by gavage) to immature female Wistar rats. Drug Chem Toxicol. 1998;21 (Suppl 1):1–30. doi: 10.3109/01480549809007402. [DOI] [PubMed] [Google Scholar]
- Blair R. M., Fang H., Branham W. S., Hass B. S., Dial S. L., Moland C. L., Tong W., Shi L., Perkins R., Sheehan D. M. The estrogen receptor relative binding affinities of 188 natural and xenochemicals: structural diversity of ligands. Toxicol Sci. 2000 Mar;54(1):138–153. doi: 10.1093/toxsci/54.1.138. [DOI] [PubMed] [Google Scholar]
- Branham William S., Dial Stacey L., Moland Carrie L., Hass Bruce S., Blair Robert M., Fang Hong, Shi Leming, Tong Weida, Perkins Roger G., Sheehan Daniel M. Phytoestrogens and mycoestrogens bind to the rat uterine estrogen receptor. J Nutr. 2002 Apr;132(4):658–664. doi: 10.1093/jn/132.4.658. [DOI] [PubMed] [Google Scholar]
- Brotons J. A., Olea-Serrano M. F., Villalobos M., Pedraza V., Olea N. Xenoestrogens released from lacquer coatings in food cans. Environ Health Perspect. 1995 Jun;103(6):608–612. doi: 10.1289/ehp.95103608. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Charles G. D., Bartels M. J., Zacharewski T. R., Gollapudi B. B., Freshour N. L., Carney E. W. Activity of benzo[a]pyrene and its hydroxylated metabolites in an estrogen receptor-alpha reporter gene assay. Toxicol Sci. 2000 Jun;55(2):320–326. doi: 10.1093/toxsci/55.2.320. [DOI] [PubMed] [Google Scholar]
- Chen C. W., Hurd C., Vorojeikina D. P., Arnold S. F., Notides A. C. Transcriptional activation of the human estrogen receptor by DDT isomers and metabolites in yeast and MCF-7 cells. Biochem Pharmacol. 1997 Apr 25;53(8):1161–1172. doi: 10.1016/s0006-2952(97)00097-x. [DOI] [PubMed] [Google Scholar]
- Colborn T. Environmental estrogens: health implications for humans and wildlife. Environ Health Perspect. 1995 Oct;103 (Suppl 7):135–136. doi: 10.1289/ehp.95103s7135. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Connor K., Ramamoorthy K., Moore M., Mustain M., Chen I., Safe S., Zacharewski T., Gillesby B., Joyeux A., Balaguer P. Hydroxylated polychlorinated biphenyls (PCBs) as estrogens and antiestrogens: structure-activity relationships. Toxicol Appl Pharmacol. 1997 Jul;145(1):111–123. doi: 10.1006/taap.1997.8169. [DOI] [PubMed] [Google Scholar]
- Elsby R., Ashby J., Sumpter J. P., Brooks A. N., Pennie W. D., Maggs J. L., Lefevre P. A., Odum J., Beresford N., Paton D. Obstacles to the prediction of estrogenicity from chemical structure: assay-mediated metabolic transformation and the apparent promiscuous nature of the estrogen receptor. Biochem Pharmacol. 2000 Nov 15;60(10):1519–1530. doi: 10.1016/s0006-2952(00)00466-4. [DOI] [PubMed] [Google Scholar]
- Elsby R., Maggs J. L., Ashby J., Paton D., Sumpter J. P., Park B. K. Assessment of the effects of metabolism on the estrogenic activity of xenoestrogens: a two-stage approach coupling human liver microsomes and a yeast estrogenicity assay. J Pharmacol Exp Ther. 2001 Feb;296(2):329–337. [PubMed] [Google Scholar]
- Esaac E. G., Matsumura F. Metabolism of insecticides by reductive systems. Pharmacol Ther. 1980;9(1):1–26. doi: 10.1016/0163-7258(80)90014-5. [DOI] [PubMed] [Google Scholar]
- Fail P. A., Hines J. W., Zacharewski T., Wu Z. F., Borodinsky L. Assessment of polystyrene extract for estrogenic activity in the rat uterotrophic model and an in vitro recombinant receptor reporter gene assay. Drug Chem Toxicol. 1998;21 (Suppl 1):101–121. doi: 10.3109/01480549809007405. [DOI] [PubMed] [Google Scholar]
- Fang H., Tong W., Perkins R., Soto A. M., Prechtl N. V., Sheehan D. M. Quantitative comparisons of in vitro assays for estrogenic activities. Environ Health Perspect. 2000 Aug;108(8):723–729. doi: 10.1289/ehp.00108723. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fertuck K. C., Matthews J. B., Zacharewski T. R. Hydroxylated benzo[a]pyrene metabolites are responsible for in vitro estrogen receptor-mediated gene expression induced by benzo[a]pyrene, but do not elicit uterotrophic effects in vivo. Toxicol Sci. 2001 Feb;59(2):231–240. doi: 10.1093/toxsci/59.2.231. [DOI] [PubMed] [Google Scholar]
- Garner C. E., Jefferson W. N., Burka L. T., Matthews H. B., Newbold R. R. In vitro estrogenicity of the catechol metabolites of selected polychlorinated biphenyls. Toxicol Appl Pharmacol. 1999 Jan 15;154(2):188–197. doi: 10.1006/taap.1998.8560. [DOI] [PubMed] [Google Scholar]
- Hong Huixiao, Tong Weida, Fang Hong, Shi Leming, Xie Qian, Wu Jie, Perkins Roger, Walker John D., Branham William, Sheehan Daniel M. Prediction of estrogen receptor binding for 58,000 chemicals using an integrated system of a tree-based model with structural alerts. Environ Health Perspect. 2002 Jan;110(1):29–36. doi: 10.1289/ehp.0211029. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kelce W. R., Stone C. R., Laws S. C., Gray L. E., Kemppainen J. A., Wilson E. M. Persistent DDT metabolite p,p'-DDE is a potent androgen receptor antagonist. Nature. 1995 Jun 15;375(6532):581–585. doi: 10.1038/375581a0. [DOI] [PubMed] [Google Scholar]
- Kitamura Shigeyuki, Shimizu Yuri, Shiraga Yuko, Yoshida Mayumi, Sugihara Kazumi, Ohta Shigeru. Reductive metabolism of p,p'-DDT and o,p'-DDT by rat liver cytochrome P450. Drug Metab Dispos. 2002 Feb;30(2):113–118. doi: 10.1124/dmd.30.2.113. [DOI] [PubMed] [Google Scholar]
- Koga N., Beppu M., Yoshimura H. Metabolism in vivo of 3,4,5,3',4'-pentachlorobiphenyl and toxicological assessment of the metabolite in rats. J Pharmacobiodyn. 1990 Aug;13(8):497–506. doi: 10.1248/bpb1978.13.497. [DOI] [PubMed] [Google Scholar]
- Korach K. S., Sarver P., Chae K., McLachlan J. A., McKinney J. D. Estrogen receptor-binding activity of polychlorinated hydroxybiphenyls: conformationally restricted structural probes. Mol Pharmacol. 1988 Jan;33(1):120–126. [PubMed] [Google Scholar]
- Kupfer D., Bulger W. H. Metabolic activation of pesticides with proestrogenic activity. Fed Proc. 1987 Apr;46(5):1864–1869. [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Nakagawa Y., Tayama K. Estrogenic potency of benzophenone and its metabolites in juvenile female rats. Arch Toxicol. 2001 Apr;75(2):74–79. doi: 10.1007/s002040100225. [DOI] [PubMed] [Google Scholar]
- Nakagawa Yoshio, Suzuki Toshinari. Metabolism of 2-hydroxy-4-methoxybenzophenone in isolated rat hepatocytes and xenoestrogenic effects of its metabolites on MCF-7 human breast cancer cells. Chem Biol Interact. 2002 Feb 20;139(2):115–128. doi: 10.1016/s0009-2797(01)00293-9. [DOI] [PubMed] [Google Scholar]
- Ohyama K. I., Nagai F., Tsuchiya Y. Certain styrene oligomers have proliferative activity on MCF-7 human breast tumor cells and binding affinity for human estrogen receptor. Environ Health Perspect. 2001 Jul;109(7):699–703. doi: 10.1289/ehp.01109699. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Prinsen M. K., Gouko N. Determination of the oestrogenic (uterotrophic) activity of extracts of 'general purpose polystyrene (GPPS)' using immature female rats. J Appl Toxicol. 2001 May-Jun;21(3):235–239. doi: 10.1002/jat.749. [DOI] [PubMed] [Google Scholar]
- Routledge E. J., Sumpter J. P. Structural features of alkylphenolic chemicals associated with estrogenic activity. J Biol Chem. 1997 Feb 7;272(6):3280–3288. doi: 10.1074/jbc.272.6.3280. [DOI] [PubMed] [Google Scholar]
- Sanoh Seigo, Kitamura Shigeyuki, Sugihara Kazumi, Ohta Shigeru. Cytochrome P450 1A1/2 mediated metabolism of trans-stilbene in rats and humans. Biol Pharm Bull. 2002 Mar;25(3):397–400. doi: 10.1248/bpb.25.397. [DOI] [PubMed] [Google Scholar]
- Shi L. M., Fang H., Tong W., Wu J., Perkins R., Blair R. M., Branham W. S., Dial S. L., Moland C. L., Sheehan D. M. QSAR models using a large diverse set of estrogens. J Chem Inf Comput Sci. 2001 Jan-Feb;41(1):186–195. doi: 10.1021/ci000066d. [DOI] [PubMed] [Google Scholar]
- Stresser D. M., Kupfer D. Human cytochrome P450-catalyzed conversion of the proestrogenic pesticide methoxychlor into an estrogen. Role of CYP2C19 and CYP1A2 in O-demethylation. Drug Metab Dispos. 1998 Sep;26(9):868–874. [PubMed] [Google Scholar]
- Sugihara K., Kitamura S., Sanoh S., Ohta S., Fujimoto N., Maruyama S., Ito A. Metabolic activation of the proestrogens trans-stilbene and trans-stilbene oxide by rat liver microsomes. Toxicol Appl Pharmacol. 2000 Aug 15;167(1):46–54. doi: 10.1006/taap.2000.8979. [DOI] [PubMed] [Google Scholar]
- Yoshihara S., Makishima M., Suzuki N., Ohta S. Metabolic activation of bisphenol A by rat liver S9 fraction. Toxicol Sci. 2001 Aug;62(2):221–227. doi: 10.1093/toxsci/62.2.221. [DOI] [PubMed] [Google Scholar]