Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 2003 Mar;111(3):335–341. doi: 10.1289/ehp.5504

A delta-aminolevulinic acid dehydratase (ALAD) polymorphism may modify the relationship of low-level lead exposure to uricemia and renal function: the normative aging study.

Ming-Tsang Wu 1, Karl Kelsey 1, Joel Schwartz 1, David Sparrow 1, Scott Weiss 1, Howard Hu 1
PMCID: PMC1241391  PMID: 12611663

Abstract

In this study we investigated whether a known delta-aminolevulinic acid dehydratase (ALAD) exon 4 polymorphism has a modifying effect on the association of blood or bone lead level with uricemia and indices of renal function among middle-aged and elderly men. We performed a cross-sectional study of subjects who participated between 1991 and 1995 in the Department of Veterans Affairs Normative Aging Study. Information on blood lead levels, bone lead levels (measured by K-shell X-ray fluorescence), serum uric acid, serum creatinine, estimated creatinine clearance, and ALAD polymorphism status was available in 709 subjects. Regression models were constructed to examine the relationships of serum uric acid, serum creatinine, and estimated creatinine clearance to blood or bone lead level, stratified by genotype. We also adjusted for age, body mass index, blood pressure, smoking, alcohol consumption, and ingestion of analgesic medications (n = 638). Of the 709 subjects, 7 (1%) and 107 (15%) were homozygous and heterozygous for the variant (ALAD-2) allele, respectively. The mean (range) serum uric acid and creatinine levels were 6.5 (2.9-10.6) and 1.2 (0.6-2.5) mg/dL. No significant differences were found in serum uric acid, serum creatinine, or estimated creatinine clearance by ALAD genotype. However, after adjusting for other potential confounders, we found a significant linear relationship between serum uric acid and patella bone lead (p = 0.040) among the ALAD 1-2/2-2 genotype individuals above a threshold patellar lead level of 15 micro g/g. In contrast, among the wild-type (ALAD 1-1) individuals, there was a suggestion of a significant linear relationship of serum uric acid with patella bone lead (p = 0.141), but only after a threshold of 101 micro g/g. There was evidence of a significant (p = 0.025) interaction of tibia lead with genotype (ALAD 1-1 vs. ALAD 1-2/2-2) regarding serum creatinine as an outcome, but in the same linear regression model tibia lead alone was not a significant predictor of serum creatinine. Conversely, for estimated creatinine clearance, patella lead, but not the interaction of patella lead with genotype, was a significantly independent predictor (p = 0.026). Our findings suggest that ALAD genotype may modify the effect of lead on the renal excretion of uric acid as well as overall renal function among middle-aged and elderly men who had community (nonoccupational) exposures to lead. Additional research is needed to ascertain whether this constitutes a true gene-environment interaction and, if so, its clinical impact.

Full Text

The Full Text of this article is available as a PDF (679.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ball G. V., Sorensen L. B. Pathogenesis of hyperuricemia in saturinine gout. N Engl J Med. 1969 May 29;280(22):1199–1202. doi: 10.1056/NEJM196905292802203. [DOI] [PubMed] [Google Scholar]
  2. Battistuzzi G., Petrucci R., Silvagni L., Urbani F. R., Caiola S. delta-Aminolevulinate dehydrase: a new genetic polymorphism in man. Ann Hum Genet. 1981 Jul;45(Pt 3):223–229. doi: 10.1111/j.1469-1809.1981.tb00333.x. [DOI] [PubMed] [Google Scholar]
  3. Bellinger D., Hu H., Titlebaum L., Needleman H. L. Attentional correlates of dentin and bone lead levels in adolescents. Arch Environ Health. 1994 Mar-Apr;49(2):98–105. doi: 10.1080/00039896.1994.9937461. [DOI] [PubMed] [Google Scholar]
  4. Bergdahl I. A., Gerhardsson L., Schütz A., Desnick R. J., Wetmur J. G., Skerfving S. Delta-aminolevulinic acid dehydratase polymorphism: influence on lead levels and kidney function in humans. Arch Environ Health. 1997 Mar-Apr;52(2):91–96. doi: 10.1080/00039899709602870. [DOI] [PubMed] [Google Scholar]
  5. Bergdahl I. A., Grubb A., Schütz A., Desnick R. J., Wetmur J. G., Sassa S., Skerfving S. Lead binding to delta-aminolevulinic acid dehydratase (ALAD) in human erythrocytes. Pharmacol Toxicol. 1997 Oct;81(4):153–158. doi: 10.1111/j.1600-0773.1997.tb02061.x. [DOI] [PubMed] [Google Scholar]
  6. Campion E. W., Glynn R. J., DeLabry L. O. Asymptomatic hyperuricemia. Risks and consequences in the Normative Aging Study. Am J Med. 1987 Mar;82(3):421–426. doi: 10.1016/0002-9343(87)90441-4. [DOI] [PubMed] [Google Scholar]
  7. Cockcroft D. W., Gault M. H. Prediction of creatinine clearance from serum creatinine. Nephron. 1976;16(1):31–41. doi: 10.1159/000180580. [DOI] [PubMed] [Google Scholar]
  8. Fleming D. E., Chettle D. R., Wetmur J. G., Desnick R. J., Robin J. P., Boulay D., Richard N. S., Gordon C. L., Webber C. E. Effect of the delta-aminolevulinate dehydratase polymorphism on the accumulation of lead in bone and blood in lead smelter workers. Environ Res. 1998 Apr;77(1):49–61. doi: 10.1006/enrs.1997.3818. [DOI] [PubMed] [Google Scholar]
  9. Hu H. Bone lead as a new biologic marker of lead dose: recent findings and implications for public health. Environ Health Perspect. 1998 Aug;106 (Suppl 4):961–967. doi: 10.1289/ehp.98106s4961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hu H., Payton M., Korrick S., Aro A., Sparrow D., Weiss S. T., Rotnitzky A. Determinants of bone and blood lead levels among community-exposed middle-aged to elderly men. The normative aging study. Am J Epidemiol. 1996 Oct 15;144(8):749–759. doi: 10.1093/oxfordjournals.aje.a008999. [DOI] [PubMed] [Google Scholar]
  11. Hu H., Rabinowitz M., Smith D. Bone lead as a biological marker in epidemiologic studies of chronic toxicity: conceptual paradigms. Environ Health Perspect. 1998 Jan;106(1):1–8. doi: 10.1289/ehp.981061. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Khoury M. J., Adams M. J., Jr, Flanders W. D. An epidemiologic approach to ecogenetics. Am J Hum Genet. 1988 Jan;42(1):89–95. [PMC free article] [PubMed] [Google Scholar]
  13. Kim R., Aro A., Rotnitzky A., Amarasiriwardena C., Hu H. K x-ray fluorescence measurements of bone lead concentration: the analysis of low-level data. Phys Med Biol. 1995 Sep;40(9):1475–1485. doi: 10.1088/0031-9155/40/9/007. [DOI] [PubMed] [Google Scholar]
  14. Kim R., Rotnitsky A., Sparrow D., Weiss S., Wager C., Hu H. A longitudinal study of low-level lead exposure and impairment of renal function. The Normative Aging Study. JAMA. 1996 Apr 17;275(15):1177–1181. [PubMed] [Google Scholar]
  15. Loghman-Adham M. Renal effects of environmental and occupational lead exposure. Environ Health Perspect. 1997 Sep;105(9):928–938. doi: 10.1289/ehp.97105928. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Nolan C. V., Shaikh Z. A. Lead nephrotoxicity and associated disorders: biochemical mechanisms. Toxicology. 1992;73(2):127–146. doi: 10.1016/0300-483x(92)90097-x. [DOI] [PubMed] [Google Scholar]
  17. Payton M., Hu H., Sparrow D., Weiss S. T. Low-level lead exposure and renal function in the Normative Aging Study. Am J Epidemiol. 1994 Nov 1;140(9):821–829. doi: 10.1093/oxfordjournals.aje.a117330. [DOI] [PubMed] [Google Scholar]
  18. Schwartz B. S., Lee B. K., Lee G. S., Stewart W. F., Simon D., Kelsey K., Todd A. C. Associations of blood lead, dimercaptosuccinic acid-chelatable lead, and tibia lead with polymorphisms in the vitamin D receptor and [delta]-aminolevulinic acid dehydratase genes. Environ Health Perspect. 2000 Oct;108(10):949–954. doi: 10.1289/ehp.00108949. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Schwartz B. S., Lee B. K., Stewart W., Ahn K. D., Springer K., Kelsey K. Associations of delta-aminolevulinic acid dehydratase genotype with plant, exposure duration, and blood lead and zinc protoporphyrin levels in Korean lead workers. Am J Epidemiol. 1995 Oct 1;142(7):738–745. doi: 10.1093/oxfordjournals.aje.a117705. [DOI] [PubMed] [Google Scholar]
  20. Schwartz J., Landrigan P. J., Feldman R. G., Silbergeld E. K., Baker E. L., Jr, von Lindern I. H. Threshold effect in lead-induced peripheral neuropathy. J Pediatr. 1988 Jan;112(1):12–17. doi: 10.1016/s0022-3476(88)80111-2. [DOI] [PubMed] [Google Scholar]
  21. Shadick N. A., Kim R., Weiss S., Liang M. H., Sparrow D., Hu H. Effect of low level lead exposure on hyperuricemia and gout among middle aged and elderly men: the normative aging study. J Rheumatol. 2000 Jul;27(7):1708–1712. [PubMed] [Google Scholar]
  22. Sithisarankul P., Schwartz B. S., Lee B. K., Kelsey K. T., Strickland P. T. Aminolevulinic acid dehydratase genotype mediates plasma levels of the neurotoxin, 5-aminolevulinic acid, in lead-exposed workers. Am J Ind Med. 1997 Jul;32(1):15–20. doi: 10.1002/(sici)1097-0274(199707)32:1<15::aid-ajim2>3.0.co;2-q. [DOI] [PubMed] [Google Scholar]
  23. Smith C. M., Wang X., Hu H., Kelsey K. T. A polymorphism in the delta-aminolevulinic acid dehydratase gene may modify the pharmacokinetics and toxicity of lead. Environ Health Perspect. 1995 Mar;103(3):248–253. doi: 10.1289/ehp.95103248. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Wetmur J. G., Kaya A. H., Plewinska M., Desnick R. J. Molecular characterization of the human delta-aminolevulinate dehydratase 2 (ALAD2) allele: implications for molecular screening of individuals for genetic susceptibility to lead poisoning. Am J Hum Genet. 1991 Oct;49(4):757–763. [PMC free article] [PubMed] [Google Scholar]
  25. Wetmur J. G., Lehnert G., Desnick R. J. The delta-aminolevulinate dehydratase polymorphism: higher blood lead levels in lead workers and environmentally exposed children with the 1-2 and 2-2 isozymes. Environ Res. 1991 Dec;56(2):109–119. doi: 10.1016/s0013-9351(05)80001-5. [DOI] [PubMed] [Google Scholar]
  26. Yanagimoto T., Yamamoto E. Estimation of safe doses: critical review of the hockey stick regression method. Environ Health Perspect. 1979 Oct;32:193–199. doi: 10.1289/ehp.7932193. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Ziemsen B., Angerer J., Lehnert G., Benkmann H. G., Goedde H. W. Polymorphism of delta-aminolevulinic acid dehydratase in lead-exposed workers. Int Arch Occup Environ Health. 1986;58(3):245–247. doi: 10.1007/BF00432107. [DOI] [PubMed] [Google Scholar]
  28. van den Oord E. J. Method to detect genotype-environment interactions for quantitative trait loci in association studies. Am J Epidemiol. 1999 Dec 1;150(11):1179–1187. doi: 10.1093/oxfordjournals.aje.a009944. [DOI] [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES