Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 2003 Apr;111(4):395–401. doi: 10.1289/ehp.5856

Altered profiles of spontaneous novelty seeking, impulsive behavior, and response to D-amphetamine in rats perinatally exposed to bisphenol A.

Walter Adriani 1, Daniele Della Seta 1, Francesco Dessì-Fulgheri 1, Francesca Farabollini 1, Giovanni Laviola 1
PMCID: PMC1241418  PMID: 12676589

Abstract

Bisphenol A (BPA) is an environmental estrogen with potentially averse effects on public health. We studied the long-term effects of perinatal exposure to BPA on later behavior in adult rats of both sexes. BPA or vehicle was administered orally to mother rats from mating to pups' weaning, at a concentration (0.040 mg/kg) within the range of human exposure. The offspring of both sexes were tested at adolescence (postnatal days 35-45) for novelty preference (experiment 1). After a 3-day familiarization to one side of a two-chamber apparatus, on day 4 rats were allowed to freely explore the whole apparatus. BPA-exposed females spent significantly less time than did controls in exploration of the novel side (i.e., increased neophobia), whereas no effect was found in the male group. At adulthood, the same animals were food deprived and tested for profiles of impulsive behavior (experiment 2), in operant chambers provided with two nose-poking holes (delivering either five or one food pellet). After the establishment of a baseline preference for the large reinforcer, a delay was introduced before the delivery of the five food pellets, which was progressively increased each day (10, 20, 30, 45, 60, 80, 100 sec). As expected, all animals exhibited a progressive shift toward the immediate but smaller reinforcer. A reduced level of impulsive behavior (i.e., a shift to the right in the intolerance-delay curve) was evidenced in BPA-treated rats. The frequency of inadequate responding (during the length of the delay) also provided a measure of restless behavior. Interestingly, the profile of BPA-treated males was feminized, strongly resembling that of control females. Animals were then tested (experiment 3) for the response to an amphetamine challenge (1 mg/kg, subcutaneously). The drug-induced increment activity was significantly less marked in BPA-treated male rats compared with controls. These findings provide clear indirect evidence of long-term alterations in brain monoaminergic function after perinatal BPA exposure. This may be a cause for concern for public health, confirming that exposure to a weak environmental estrogen in the period of sexual differentiation of the brain can influence adult behavior.

Full Text

The Full Text of this article is available as a PDF (165.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adriani W., Chiarotti F., Laviola G. Elevated novelty seeking and peculiar d-amphetamine sensitization in periadolescent mice compared with adult mice. Behav Neurosci. 1998 Oct;112(5):1152–1166. doi: 10.1037//0735-7044.112.5.1152. [DOI] [PubMed] [Google Scholar]
  2. Alderson L. M., Baum M. J. Differential effects of gonadal steroids on dopamine metabolism in mesolimbic and nigro-striatal pathways of male rat brain. Brain Res. 1981 Aug 10;218(1-2):189–206. doi: 10.1016/0006-8993(81)91300-7. [DOI] [PubMed] [Google Scholar]
  3. Aloisi A. M., Della Seta D., Ceccarelli I., Farabollini F. Bisphenol-A differently affects estrogen receptors-alpha in estrous-cycling and lactating female rats. Neurosci Lett. 2001 Sep 7;310(1):49–52. doi: 10.1016/s0304-3940(01)02092-4. [DOI] [PubMed] [Google Scholar]
  4. Arnold A. P., Gorski R. A. Gonadal steroid induction of structural sex differences in the central nervous system. Annu Rev Neurosci. 1984;7:413–442. doi: 10.1146/annurev.ne.07.030184.002213. [DOI] [PubMed] [Google Scholar]
  5. Atanassova N., McKinnell C., Turner K. J., Walker M., Fisher J. S., Morley M., Millar M. R., Groome N. P., Sharpe R. M. Comparative effects of neonatal exposure of male rats to potent and weak (environmental) estrogens on spermatogenesis at puberty and the relationship to adult testis size and fertility: evidence for stimulatory effects of low estrogen levels. Endocrinology. 2000 Oct;141(10):3898–3907. doi: 10.1210/endo.141.10.7723. [DOI] [PubMed] [Google Scholar]
  6. Bardo M. T., Donohew R. L., Harrington N. G. Psychobiology of novelty seeking and drug seeking behavior. Behav Brain Res. 1996 May;77(1-2):23–43. doi: 10.1016/0166-4328(95)00203-0. [DOI] [PubMed] [Google Scholar]
  7. Bardo M. T., Neisewander J. L., Pierce R. C. Novelty-induced place preference behavior in rats: effects of opiate and dopaminergic drugs. Pharmacol Biochem Behav. 1989 Mar;32(3):683–689. doi: 10.1016/0091-3057(89)90018-x. [DOI] [PubMed] [Google Scholar]
  8. Beatty W. W. Gonadal hormones and sex differences in nonreproductive behaviors in rodents: organizational and activational influences. Horm Behav. 1979 Apr;12(2):112–163. doi: 10.1016/0018-506x(79)90017-5. [DOI] [PubMed] [Google Scholar]
  9. Becker J. B. Gender differences in dopaminergic function in striatum and nucleus accumbens. Pharmacol Biochem Behav. 1999 Dec;64(4):803–812. doi: 10.1016/s0091-3057(99)00168-9. [DOI] [PubMed] [Google Scholar]
  10. Bizot J., Le Bihan C., Puech A. J., Hamon M., Thiébot M. Serotonin and tolerance to delay of reward in rats. Psychopharmacology (Berl) 1999 Oct;146(4):400–412. doi: 10.1007/pl00005485. [DOI] [PubMed] [Google Scholar]
  11. Bradshaw C. M., Szabadi E. Choice between delayed reinforcers in a discrete-trials schedule: the effect of deprivation level. Q J Exp Psychol B. 1992 Jan;44(1):1–6. doi: 10.1080/02724999208250599. [DOI] [PubMed] [Google Scholar]
  12. Brotons J. A., Olea-Serrano M. F., Villalobos M., Pedraza V., Olea N. Xenoestrogens released from lacquer coatings in food cans. Environ Health Perspect. 1995 Jun;103(6):608–612. doi: 10.1289/ehp.95103608. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Carlsen E., Giwercman A., Keiding N., Skakkebaek N. E. Evidence for decreasing quality of semen during past 50 years. BMJ. 1992 Sep 12;305(6854):609–613. doi: 10.1136/bmj.305.6854.609. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Cyr Michel, Calon Frederic, Morissette Marc, Di Paolo Thérèse. Estrogenic modulation of brain activity: implications for schizophrenia and Parkinson's disease. J Psychiatry Neurosci. 2002 Jan;27(1):12–27. [PMC free article] [PubMed] [Google Scholar]
  15. Dessì-Fulgheri Francesco, Porrini Stefania, Farabollini Francesca. Effects of perinatal exposure to bisphenol A on play behavior of female and male juvenile rats. Environ Health Perspect. 2002 Jun;110 (Suppl 3):403–407. doi: 10.1289/ehp.110-1241190. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Dluzen D. E. Neuroprotective effects of estrogen upon the nigrostriatal dopaminergic system. J Neurocytol. 2000 May-Jun;29(5-6):387–399. doi: 10.1023/a:1007117424491. [DOI] [PubMed] [Google Scholar]
  17. Euvrard C., Oberlander C., Boissier J. R. Antidopaminergic effect of estrogens at the striatal level. J Pharmacol Exp Ther. 1980 Jul;214(1):179–185. [PubMed] [Google Scholar]
  18. Evenden J. L., Ryan C. N. The pharmacology of impulsive behaviour in rats: the effects of drugs on response choice with varying delays of reinforcement. Psychopharmacology (Berl) 1996 Nov;128(2):161–170. doi: 10.1007/s002130050121. [DOI] [PubMed] [Google Scholar]
  19. Evenden J. L. Varieties of impulsivity. Psychopharmacology (Berl) 1999 Oct;146(4):348–361. doi: 10.1007/pl00005481. [DOI] [PubMed] [Google Scholar]
  20. Exner M., Clark D. Behaviour in the novel environment predicts responsiveness to d-amphetamine in the rat: a multivariate approach. Behav Pharmacol. 1993 Feb;4(1):47–56. [PubMed] [Google Scholar]
  21. Farabollini F., Porrini S., Dessì-Fulgherit F. Perinatal exposure to the estrogenic pollutant bisphenol A affects behavior in male and female rats. Pharmacol Biochem Behav. 1999 Dec;64(4):687–694. doi: 10.1016/s0091-3057(99)00136-7. [DOI] [PubMed] [Google Scholar]
  22. Farabollini Francesca, Porrini Stefania, Della Seta Daniele, Bianchi Fiorella, Dessì-Fulgheri Francesco. Effects of perinatal exposure to bisphenol A on sociosexual behavior of female and male rats. Environ Health Perspect. 2002 Jun;110 (Suppl 3):409–414. doi: 10.1289/ehp.02110s3409. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Fink G., Sumner B. E., Rosie R., Grace O., Quinn J. P. Estrogen control of central neurotransmission: effect on mood, mental state, and memory. Cell Mol Neurobiol. 1996 Jun;16(3):325–344. doi: 10.1007/BF02088099. [DOI] [PubMed] [Google Scholar]
  24. Fink G., Sumner B., Rosie R., Wilson H., McQueen J. Androgen actions on central serotonin neurotransmission: relevance for mood, mental state and memory. Behav Brain Res. 1999 Nov 1;105(1):53–68. doi: 10.1016/s0166-4328(99)00082-0. [DOI] [PubMed] [Google Scholar]
  25. Fisher J. S., Turner K. J., Brown D., Sharpe R. M. Effect of neonatal exposure to estrogenic compounds on development of the excurrent ducts of the rat testis through puberty to adulthood. Environ Health Perspect. 1999 May;107(5):397–405. doi: 10.1289/ehp.99107397. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Guillette L. J., Jr, Pickford D. B., Crain D. A., Rooney A. A., Percival H. F. Reduction in penis size and plasma testosterone concentrations in juvenile alligators living in a contaminated environment. Gen Comp Endocrinol. 1996 Jan;101(1):32–42. doi: 10.1006/gcen.1996.0005. [DOI] [PubMed] [Google Scholar]
  27. Howdeshell K. L., Hotchkiss A. K., Thayer K. A., Vandenbergh J. G., vom Saal F. S. Exposure to bisphenol A advances puberty. Nature. 1999 Oct 21;401(6755):763–764. doi: 10.1038/44517. [DOI] [PubMed] [Google Scholar]
  28. Hruska R. E., Pitman K. T. Distribution and localization of estrogen-sensitive dopamine receptors in the rat brain. J Neurochem. 1982 Nov;39(5):1418–1423. doi: 10.1111/j.1471-4159.1982.tb12586.x. [DOI] [PubMed] [Google Scholar]
  29. Hughes R. N. Behaviour of male and female rats with free choice of two environments differing in novelty. Anim Behav. 1968 Feb;16(1):92–96. doi: 10.1016/0003-3472(68)90116-4. [DOI] [PubMed] [Google Scholar]
  30. Hutchison J. B. Gender-specific steroid metabolism in neural differentiation. Cell Mol Neurobiol. 1997 Dec;17(6):603–626. doi: 10.1023/a:1022581902880. [DOI] [PubMed] [Google Scholar]
  31. Kabbaj M., Devine D. P., Savage V. R., Akil H. Neurobiological correlates of individual differences in novelty-seeking behavior in the rat: differential expression of stress-related molecules. J Neurosci. 2000 Sep 15;20(18):6983–6988. doi: 10.1523/JNEUROSCI.20-18-06983.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Kaylor W. M., Jr, Song C. H., Copeland S. J., Zuspan F. P., Kim M. H. The effect of estrogen on monoamine systems in the fetal rat brain. J Reprod Med. 1984 Jul;29(7):489–492. [PubMed] [Google Scholar]
  33. Kelly P. H., Seviour P. W., Iversen S. D. Amphetamine and apomorphine responses in the rat following 6-OHDA lesions of the nucleus accumbens septi and corpus striatum. Brain Res. 1975 Sep 5;94(3):507–522. doi: 10.1016/0006-8993(75)90233-4. [DOI] [PubMed] [Google Scholar]
  34. Kim H. S., Han S. Y., Yoo S. D., Lee B. M., Park K. L. Potential estrogenic effects of bisphenol-A estimated by in vitro and in vivo combination assays. J Toxicol Sci. 2001 Aug;26(3):111–118. doi: 10.2131/jts.26.111. [DOI] [PubMed] [Google Scholar]
  35. Linnoila M., Virkkunen M., Scheinin M., Nuutila A., Rimon R., Goodwin F. K. Low cerebrospinal fluid 5-hydroxyindoleacetic acid concentration differentiates impulsive from nonimpulsive violent behavior. Life Sci. 1983 Dec 26;33(26):2609–2614. doi: 10.1016/0024-3205(83)90344-2. [DOI] [PubMed] [Google Scholar]
  36. MacLusky N. J., Naftolin F. Sexual differentiation of the central nervous system. Science. 1981 Mar 20;211(4488):1294–1302. doi: 10.1126/science.6163211. [DOI] [PubMed] [Google Scholar]
  37. McEwen B. S. Steroid hormones: effect on brain development and function. Horm Res. 1992;37 (Suppl 3):1–10. doi: 10.1159/000182393. [DOI] [PubMed] [Google Scholar]
  38. Menniti F. S., Baum M. J. Differential effects of estrogen and androgen on locomotor activity induced in castrated male rats by amphetamine, a novel environment, or apomorphine. Brain Res. 1981 Jul 6;216(1):89–107. doi: 10.1016/0006-8993(81)91280-4. [DOI] [PubMed] [Google Scholar]
  39. Misslin R., Herzog F., Koch B., Ropartz P. Effects of isolation, handling and novelty on the pituitary--adrenal response in the mouse. Psychoneuroendocrinology. 1982;7(2-3):217–221. doi: 10.1016/0306-4530(82)90015-4. [DOI] [PubMed] [Google Scholar]
  40. Misslin R., Ropartz P. Effects of methamphetamine on novelty-seeking behaviour by mice. Psychopharmacology (Berl) 1981;75(1):39–43. doi: 10.1007/BF00433499. [DOI] [PubMed] [Google Scholar]
  41. Olea N., Pulgar R., Pérez P., Olea-Serrano F., Rivas A., Novillo-Fertrell A., Pedraza V., Soto A. M., Sonnenschein C. Estrogenicity of resin-based composites and sealants used in dentistry. Environ Health Perspect. 1996 Mar;104(3):298–305. doi: 10.1289/ehp.96104298. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Osterlund M. K., Halldin C., Hurd Y. L. Effects of chronic 17beta-estradiol treatment on the serotonin 5-HT(1A) receptor mRNA and binding levels in the rat brain. Synapse. 2000 Jan;35(1):39–44. doi: 10.1002/(SICI)1098-2396(200001)35:1<39::AID-SYN5>3.0.CO;2-T. [DOI] [PubMed] [Google Scholar]
  43. Osterlund M. K., Hurd Y. L. Acute 17 beta-estradiol treatment down-regulates serotonin 5HT1A receptor mRNA expression in the limbic system of female rats. Brain Res Mol Brain Res. 1998 Mar 30;55(1):169–172. doi: 10.1016/s0169-328x(98)00018-7. [DOI] [PubMed] [Google Scholar]
  44. Palanza P., Morley-Fletcher S., Laviola G. Novelty seeking in periadolescent mice: sex differences and influence of intrauterine position. Physiol Behav. 2001 Jan;72(1-2):255–262. doi: 10.1016/s0031-9384(00)00406-6. [DOI] [PubMed] [Google Scholar]
  45. Panksepp J. The ontogeny of play in rats. Dev Psychobiol. 1981 Jul;14(4):327–332. doi: 10.1002/dev.420140405. [DOI] [PubMed] [Google Scholar]
  46. Peris J., Decambre N., Coleman-Hardee M. L., Simpkins J. W. Estradiol enhances behavioral sensitization to cocaine and amphetamine-stimulated striatal [3H]dopamine release. Brain Res. 1991 Dec 6;566(1-2):255–264. doi: 10.1016/0006-8993(91)91706-7. [DOI] [PubMed] [Google Scholar]
  47. Pierce R. C., Crawford C. A., Nonneman A. J., Mattingly B. A., Bardo M. T. Effect of forebrain dopamine depletion on novelty-induced place preference behavior in rats. Pharmacol Biochem Behav. 1990 Jun;36(2):321–325. doi: 10.1016/0091-3057(90)90411-a. [DOI] [PubMed] [Google Scholar]
  48. Rebec G. V., Christensen J. R., Guerra C., Bardo M. T. Regional and temporal differences in real-time dopamine efflux in the nucleus accumbens during free-choice novelty. Brain Res. 1997 Nov 21;776(1-2):61–67. doi: 10.1016/s0006-8993(97)01004-4. [DOI] [PubMed] [Google Scholar]
  49. Rebec G. V., Grabner C. P., Johnson M., Pierce R. C., Bardo M. T. Transient increases in catecholaminergic activity in medial prefrontal cortex and nucleus accumbens shell during novelty. Neuroscience. 1997 Feb;76(3):707–714. doi: 10.1016/s0306-4522(96)00382-x. [DOI] [PubMed] [Google Scholar]
  50. Richards J. B., Mitchell S. H., de Wit H., Seiden L. S. Determination of discount functions in rats with an adjusting-amount procedure. J Exp Anal Behav. 1997 May;67(3):353–366. doi: 10.1901/jeab.1997.67-353. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Richards J. B., Zhang L., Mitchell S. H., de Wit H. Delay or probability discounting in a model of impulsive behavior: effect of alcohol. J Exp Anal Behav. 1999 Mar;71(2):121–143. doi: 10.1901/jeab.1999.71-121. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Robbins T. W., Everitt B. J. Neurobehavioural mechanisms of reward and motivation. Curr Opin Neurobiol. 1996 Apr;6(2):228–236. doi: 10.1016/s0959-4388(96)80077-8. [DOI] [PubMed] [Google Scholar]
  53. Rubin B. S., Murray M. K., Damassa D. A., King J. C., Soto A. M. Perinatal exposure to low doses of bisphenol A affects body weight, patterns of estrous cyclicity, and plasma LH levels. Environ Health Perspect. 2001 Jul;109(7):675–680. doi: 10.1289/ehp.01109675. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Rubinow D. R., Schmidt P. J., Roca C. A. Estrogen-serotonin interactions: implications for affective regulation. Biol Psychiatry. 1998 Nov 1;44(9):839–850. doi: 10.1016/s0006-3223(98)00162-0. [DOI] [PubMed] [Google Scholar]
  55. Sagvolden T., Aase H., Zeiner P., Berger D. Altered reinforcement mechanisms in attention-deficit/hyperactivity disorder. Behav Brain Res. 1998 Jul;94(1):61–71. [PubMed] [Google Scholar]
  56. Sagvolden T. Behavioral validation of the spontaneously hypertensive rat (SHR) as an animal model of attention-deficit/hyperactivity disorder (AD/HD). Neurosci Biobehav Rev. 2000 Jan;24(1):31–39. doi: 10.1016/s0149-7634(99)00058-5. [DOI] [PubMed] [Google Scholar]
  57. Sagvolden T., Sergeant J. A. Attention deficit/hyperactivity disorder--from brain dysfunctions to behaviour. Behav Brain Res. 1998 Jul;94(1):1–10. [PubMed] [Google Scholar]
  58. Spear L. P., Brake S. C. Periadolescence: age-dependent behavior and psychopharmacological responsivity in rats. Dev Psychobiol. 1983 Mar;16(2):83–109. doi: 10.1002/dev.420160203. [DOI] [PubMed] [Google Scholar]
  59. Statement from the work session on environmental endocrine-disrupting chemicals: neural, endocrine, and behavioral effects. Toxicol Ind Health. 1998 Jan-Apr;14(1-2):1–8. doi: 10.1177/074823379801400103. [DOI] [PubMed] [Google Scholar]
  60. Terranova M. L., Laviola G., Alleva E. Ontogeny of amicable social behavior in the mouse: gender differences and ongoing isolation outcomes. Dev Psychobiol. 1993 Dec;26(8):467–481. doi: 10.1002/dev.420260805. [DOI] [PubMed] [Google Scholar]
  61. Terranova M. L., Laviola G., de Acetis L., Alleva E. A description of the ontogeny of mouse agonistic behavior. J Comp Psychol. 1998 Mar;112(1):3–12. doi: 10.1037/0735-7036.112.1.3. [DOI] [PubMed] [Google Scholar]
  62. Thiébot M. H., Le Bihan C., Soubrié P., Simon P. Benzodiazepines reduce the tolerance to reward delay in rats. Psychopharmacology (Berl) 1985;86(1-2):147–152. doi: 10.1007/BF00431700. [DOI] [PubMed] [Google Scholar]
  63. Tohei A., Suda S., Taya K., Hashimoto T., Kogo H. Bisphenol A inhibits testicular functions and increases luteinizing hormone secretion in adult male rats. Exp Biol Med (Maywood) 2001 Mar;226(3):216–221. doi: 10.1177/153537020122600309. [DOI] [PubMed] [Google Scholar]
  64. Williams K., Fisher J. S., Turner K. J., McKinnell C., Saunders P. T., Sharpe R. M. Relationship between expression of sex steroid receptors and structure of the seminal vesicles after neonatal treatment of rats with potent or weak estrogens. Environ Health Perspect. 2001 Dec;109(12):1227–1235. doi: 10.1289/ehp.011091227. [DOI] [PMC free article] [PubMed] [Google Scholar]
  65. Williams K., McKinnell C., Saunders P. T., Walker M., Fisher J. S., Turner K. J., Atanassova N., Sharpe M. Neonatal exposure to potent and environmental oestrogens and abnormalities of the male reproductive system in the rat: evidence for importance of the androgen-oestrogen balance and assessment of the relevance to man. Hum Reprod Update. 2001 May-Jun;7(3):236–247. doi: 10.1093/humupd/7.3.236. [DOI] [PubMed] [Google Scholar]
  66. Wise R. A. Neurobiology of addiction. Curr Opin Neurobiol. 1996 Apr;6(2):243–251. doi: 10.1016/s0959-4388(96)80079-1. [DOI] [PubMed] [Google Scholar]
  67. Wolff M. S., Toniolo P. G., Lee E. W., Rivera M., Dubin N. Blood levels of organochlorine residues and risk of breast cancer. J Natl Cancer Inst. 1993 Apr 21;85(8):648–652. doi: 10.1093/jnci/85.8.648. [DOI] [PubMed] [Google Scholar]
  68. Zimmermann A., Stauffacher M., Langhans W., Würbel H. Enrichment-dependent differences in novelty exploration in rats can be explained by habituation. Behav Brain Res. 2001 Jun;121(1-2):11–20. doi: 10.1016/s0166-4328(00)00377-6. [DOI] [PubMed] [Google Scholar]
  69. vom Saal F. S., Nagel S. C., Palanza P., Boechler M., Parmigiani S., Welshons W. V. Estrogenic pesticides: binding relative to estradiol in MCF-7 cells and effects of exposure during fetal life on subsequent territorial behaviour in male mice. Toxicol Lett. 1995 May;77(1-3):343–350. doi: 10.1016/0378-4274(95)03316-5. [DOI] [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES