Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 2003 Apr;111(4):461–466. doi: 10.1289/ehp.5919

Disruption of androgen regulation in the prostate by the environmental contaminant hexachlorobenzene.

Jody L Ralph 1, Marie-Claire Orgebin-Crist 1, Jean-Jacques Lareyre 1, Colleen C Nelson 1
PMCID: PMC1241428  PMID: 12676599

Abstract

Hexachlorobenzene (HCB) is a persistent environmental contaminant that has the potential to interfere with steroid hormone regulation. The prostate requires precise control by androgens to regulate its growth and function. To determine if HCB impacts androgen action in the prostate, we used a number of methods. Our in vitro cell-culture-based assay used a firefly luciferase reporter gene driven by an androgen-responsive promoter. In the presence of dihydrotestosterone, low concentrations (0.5-5 nM) of HCB increased the androgen-responsive production of firefly luciferase and high concentrations of HCB (> 10 microM) suppressed this transcriptional activity. Results from a binding assay showed no evidence of affinity between HCB and the androgen receptor. We also tested HCB for in vivo effects using transgenic mice in which the transgene was a prostate-specific, androgen-responsive promoter upstream of a chloramphenicol acetyl transferase (CAT) reporter gene. In 4-week-old mice, the proportion of dilated prostate acini, a marker of sexual maturity, increased in the low HCB dose group and decreased in the high HCB dose mice. In the 8-week-old mice, there was a significant decrease in both CAT activity and prostate weight upon exposure to 20 mg/kg/day HCB. Therefore, in vitro and in vivo data suggest that HCB weakly agonizes androgen action, and consequently, low levels of HCB enhanced androgen action but high levels of HCB interfered. Environmental contaminants have been implicated in the rising incidence of prostate cancer, and insight into the mechanisms of endocrine disruption will help to clarify their role.

Full Text

The Full Text of this article is available as a PDF (167.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brawley O. W., Barnes S., Parnes H. The future of prostate cancer prevention. Ann N Y Acad Sci. 2001 Dec;952:145–152. doi: 10.1111/j.1749-6632.2001.tb02735.x. [DOI] [PubMed] [Google Scholar]
  2. Cooke G. M., Newsome W. H., Bondy G. S., Arnold D. L., Tanner J. R., Robertson P., Whalen C. M., Angers G., Massé A. The mammalian testis accumulates lower levels of organochlorine chemicals compared with other tissues. Reprod Toxicol. 2001 May-Jun;15(3):333–338. doi: 10.1016/s0890-6238(01)00126-5. [DOI] [PubMed] [Google Scholar]
  3. Cripps D. J., Peters H. A., Gocmen A., Dogramici I. Porphyria turcica due to hexachlorobenzene: a 20 to 30 year follow-up study on 204 patients. Br J Dermatol. 1984 Oct;111(4):413–422. doi: 10.1111/j.1365-2133.1984.tb06603.x. [DOI] [PubMed] [Google Scholar]
  4. Cunha G. R., Donjacour A. A., Cooke P. S., Mee S., Bigsby R. M., Higgins S. J., Sugimura Y. The endocrinology and developmental biology of the prostate. Endocr Rev. 1987 Aug;8(3):338–362. doi: 10.1210/edrv-8-3-338. [DOI] [PubMed] [Google Scholar]
  5. Delclos K. B., Bucci T. J., Lomax L. G., Latendresse J. R., Warbritton A., Weis C. C., Newbold R. R. Effects of dietary genistein exposure during development on male and female CD (Sprague-Dawley) rats. Reprod Toxicol. 2001 Nov-Dec;15(6):647–663. doi: 10.1016/s0890-6238(01)00177-0. [DOI] [PubMed] [Google Scholar]
  6. Eckert R. L., Katzenellenbogen B. S. Physical properties of estrogen receptor complexes in MCF-7 human breast cancer cells. Differences with anti-estrogen and estrogen. J Biol Chem. 1982 Aug 10;257(15):8840–8846. [PubMed] [Google Scholar]
  7. Elissalde M. H., Jr, Clark D. E. Testosterone metabolism by hexachlorobenzene-induced hepatic microsomal enzymes. Am J Vet Res. 1979 Dec;40(12):1762–1766. [PubMed] [Google Scholar]
  8. Ernst W. Hexachlorobenzene in the marine environment: distribution, fate and ecotoxicological aspects. IARC Sci Publ. 1986;(77):211–222. [PubMed] [Google Scholar]
  9. Foster W. G., Jarrell J. F., Younglai E. V., Wade M. G., Arnold D. L., Jordan S. An overview of some reproductive toxicology studies conducted at Health Canada. Toxicol Ind Health. 1996 May-Aug;12(3-4):447–459. doi: 10.1177/074823379601200316. [DOI] [PubMed] [Google Scholar]
  10. Foster W. G., Pentick J. A., McMahon A., Lecavalier P. R. Body distribution and endocrine toxicity of hexachlorobenzene (HCB) in the female rat. J Appl Toxicol. 1993 Mar-Apr;13(2):79–83. doi: 10.1002/jat.2550130203. [DOI] [PubMed] [Google Scholar]
  11. Geyer H., Scheunert I., Korte F. Bioconcentration potential of organic environmental chemicals in humans. Regul Toxicol Pharmacol. 1986 Dec;6(4):313–347. doi: 10.1016/0273-2300(86)90002-4. [DOI] [PubMed] [Google Scholar]
  12. Gocmen A., Peters H. A., Cripps D. J., Bryan G. T., Morris C. R. Hexachlorobenzene episode in Turkey. Biomed Environ Sci. 1989 Mar;2(1):36–43. [PubMed] [Google Scholar]
  13. Gray L. E., Jr, Ostby J. S., Kelce W. R. Developmental effects of an environmental antiandrogen: the fungicide vinclozolin alters sex differentiation of the male rat. Toxicol Appl Pharmacol. 1994 Nov;129(1):46–52. doi: 10.1006/taap.1994.1227. [DOI] [PubMed] [Google Scholar]
  14. Gray L. E., Ostby J., Furr J., Wolf C. J., Lambright C., Parks L., Veeramachaneni D. N., Wilson V., Price M., Hotchkiss A. Effects of environmental antiandrogens on reproductive development in experimental animals. Hum Reprod Update. 2001 May-Jun;7(3):248–264. doi: 10.1093/humupd/7.3.248. [DOI] [PubMed] [Google Scholar]
  15. Gupta C. The role of estrogen receptor, androgen receptor and growth factors in diethylstilbestrol-induced programming of prostate differentiation. Urol Res. 2000 Aug;28(4):223–229. doi: 10.1007/s002400000107. [DOI] [PubMed] [Google Scholar]
  16. Hansen J. C., Gorski J. Conformational transitions of the estrogen receptor monomer. Effects of estrogens, antiestrogen, and temperature. J Biol Chem. 1986 Oct 25;261(30):13990–13996. [PubMed] [Google Scholar]
  17. Hib J., Ponzio R. The abnormal development of male sex organs in the rat using a pure antiandrogen and a 5 alpha-reductase inhibitor during gestation. Acta Physiol Pharmacol Ther Latinoam. 1995;45(1):27–33. [PubMed] [Google Scholar]
  18. Horst H. J., Erdmann T. Recovery of free androgens in the rat prostate in vivo and in vitro after treatment with orally active testosterone undecanoate (TU). Horm Metab Res. 1980 Oct;12(10):541–545. doi: 10.1055/s-2007-999194. [DOI] [PubMed] [Google Scholar]
  19. Hosie S., Loff S., Witt K., Niessen K., Waag K. L. Is there a correlation between organochlorine compounds and undescended testes? Eur J Pediatr Surg. 2000 Oct;10(5):304–309. doi: 10.1055/s-2008-1072381. [DOI] [PubMed] [Google Scholar]
  20. Hsing A. W., Tsao L., Devesa S. S. International trends and patterns of prostate cancer incidence and mortality. Int J Cancer. 2000 Jan 1;85(1):60–67. doi: 10.1002/(sici)1097-0215(20000101)85:1<60::aid-ijc11>3.0.co;2-b. [DOI] [PubMed] [Google Scholar]
  21. Iguer-Ouada M., Verstegen J. P. Effect of finasteride (Proscar MSD) on seminal composition, prostate function and fertility in male dogs. J Reprod Fertil Suppl. 1997;51:139–149. [PubMed] [Google Scholar]
  22. Jana N. R., Sarkar S., Ishizuka M., Yonemoto J., Tohyama C., Sone H. Cross-talk between 2,3,7,8-tetrachlorodibenzo-p-dioxin and testosterone signal transduction pathways in LNCaP prostate cancer cells. Biochem Biophys Res Commun. 1999 Mar 24;256(3):462–468. doi: 10.1006/bbrc.1999.0367. [DOI] [PubMed] [Google Scholar]
  23. Kasper S., Rennie P. S., Bruchovsky N., Lin L., Cheng H., Snoek R., Dahlman-Wright K., Gustafsson J. A., Shiu R. P., Sheppard P. C. Selective activation of the probasin androgen-responsive region by steroid hormones. J Mol Endocrinol. 1999 Jun;22(3):313–325. doi: 10.1677/jme.0.0220313. [DOI] [PubMed] [Google Scholar]
  24. Kelce W. R., Lambright C. R., Gray L. E., Jr, Roberts K. P. Vinclozolin and p,p'-DDE alter androgen-dependent gene expression: in vivo confirmation of an androgen receptor-mediated mechanism. Toxicol Appl Pharmacol. 1997 Jan;142(1):192–200. doi: 10.1006/taap.1996.7966. [DOI] [PubMed] [Google Scholar]
  25. Kinomoto T., Sawada M., Ogawa S., Iguchi A., Matsui A., Iino Y., Shiraishi Y., Nishi N., Mera Y. Collaborative work to evaluate toxicity on male reproductive organs by repeated dose studies in rats 3). Effects of repeated doses of ethinylestradiol for 2 and 4 weeks on the male reproductive organs. J Toxicol Sci. 2000 Oct;25(Spec No):43–49. doi: 10.2131/jts.25.specialissue_43. [DOI] [PubMed] [Google Scholar]
  26. Lareyre J. J., Reid K., Nelson C., Kasper S., Rennie P. S., Orgebin-Crist M. C., Matusik R. J. Characterization of an androgen-specific response region within the 5' flanking region of the murine epididymal retinoic acid binding protein gene. Biol Reprod. 2000 Dec;63(6):1881–1892. doi: 10.1095/biolreprod63.6.1881. [DOI] [PubMed] [Google Scholar]
  27. Lareyre J. J., Thomas T. Z., Zheng W. L., Kasper S., Ong D. E., Orgebin-Crist M. C., Matusik R. J. A 5-kilobase pair promoter fragment of the murine epididymal retinoic acid-binding protein gene drives the tissue-specific, cell-specific, and androgen-regulated expression of a foreign gene in the epididymis of transgenic mice. J Biol Chem. 1999 Mar 19;274(12):8282–8290. doi: 10.1074/jbc.274.12.8282. [DOI] [PubMed] [Google Scholar]
  28. Mably T. A., Moore R. W., Peterson R. E. In utero and lactational exposure of male rats to 2,3,7,8-tetrachlorodibenzo-p-dioxin. 1. Effects on androgenic status. Toxicol Appl Pharmacol. 1992 May;114(1):97–107. doi: 10.1016/0041-008x(92)90101-w. [DOI] [PubMed] [Google Scholar]
  29. McIntyre B. S., Barlow N. J., Foster P. M. Androgen-mediated development in male rat offspring exposed to flutamide in utero: permanence and correlation of early postnatal changes in anogenital distance and nipple retention with malformations in androgen-dependent tissues. Toxicol Sci. 2001 Aug;62(2):236–249. doi: 10.1093/toxsci/62.2.236. [DOI] [PubMed] [Google Scholar]
  30. Müller W. F., Hobson W., Fuller G. B., Knauf W., Coulston F., Korte F. Endocrine effects of chlorinated hydrocarbons in rhesus monkeys. Ecotoxicol Environ Saf. 1978 Sep;2(2):161–172. doi: 10.1016/0147-6513(78)90007-6. [DOI] [PubMed] [Google Scholar]
  31. Nakashima Y., Ohsawa S., Umegaki K., Ikegami S. Hexachlorobenzene accumulated by dams during pregnancy is transferred to suckling rats during early lactation. J Nutr. 1997 Apr;127(4):648–654. doi: 10.1093/jn/127.4.648. [DOI] [PubMed] [Google Scholar]
  32. Orgebin-Crist M. C., Eller B. C., Danzo B. J. The effects of estradiol, tamoxifen, and testosterone on the weights and histology of the epididymis and accessory sex organs of sexually immature rabbits. Endocrinology. 1983 Nov;113(5):1703–1715. doi: 10.1210/endo-113-5-1703. [DOI] [PubMed] [Google Scholar]
  33. Rennie P. S., Bruchovsky N., Leco K. J., Sheppard P. C., McQueen S. A., Cheng H., Snoek R., Hamel A., Bock M. E., MacDonald B. S. Characterization of two cis-acting DNA elements involved in the androgen regulation of the probasin gene. Mol Endocrinol. 1993 Jan;7(1):23–36. doi: 10.1210/mend.7.1.8446105. [DOI] [PubMed] [Google Scholar]
  34. Robinson P. E., Mack G. A., Remmers J., Levy R., Mohadjer L. Trends of PCB, hexachlorobenzene, and beta-benzene hexachloride levels in the adipose tissue of the U.S. population. Environ Res. 1990 Dec;53(2):175–192. doi: 10.1016/s0013-9351(05)80118-5. [DOI] [PubMed] [Google Scholar]
  35. Sato N., Sadar M. D., Bruchovsky N., Saatcioglu F., Rennie P. S., Sato S., Lange P. H., Gleave M. E. Androgenic induction of prostate-specific antigen gene is repressed by protein-protein interaction between the androgen receptor and AP-1/c-Jun in the human prostate cancer cell line LNCaP. J Biol Chem. 1997 Jul 11;272(28):17485–17494. doi: 10.1074/jbc.272.28.17485. [DOI] [PubMed] [Google Scholar]
  36. Schröder F. H. Medical treatment of benign prostatic hyperplasia: the effect of surgical or medical castration. Prog Clin Biol Res. 1994;386:191–196. [PubMed] [Google Scholar]
  37. Sharma-Wagner S., Chokkalingam A. P., Malker H. S., Stone B. J., McLaughlin J. K., Hsing A. W. Occupation and prostate cancer risk in Sweden. J Occup Environ Med. 2000 May;42(5):517–525. doi: 10.1097/00043764-200005000-00010. [DOI] [PubMed] [Google Scholar]
  38. Smith A. G., Dinsdale D., Cabral J. R., Wright A. L. Goitre and wasting induced in hamsters by hexachlorobenzene. Arch Toxicol. 1987 Jul;60(5):343–349. doi: 10.1007/BF00295753. [DOI] [PubMed] [Google Scholar]
  39. Smith C. L., Conneely O. M., O'Malley B. W. Modulation of the ligand-independent activation of the human estrogen receptor by hormone and antihormone. Proc Natl Acad Sci U S A. 1993 Jul 1;90(13):6120–6124. doi: 10.1073/pnas.90.13.6120. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Snoek R., Rennie P. S., Kasper S., Matusik R. J., Bruchovsky N. Induction of cell-free, in vitro transcription by recombinant androgen receptor peptides. J Steroid Biochem Mol Biol. 1996 Nov;59(3-4):243–250. doi: 10.1016/s0960-0760(96)00116-1. [DOI] [PubMed] [Google Scholar]
  41. Swinnen J. V., Van Veldhoven P. P., Esquenet M., Heyns W., Verhoeven G. Androgens markedly stimulate the accumulation of neutral lipids in the human prostatic adenocarcinoma cell line LNCaP. Endocrinology. 1996 Oct;137(10):4468–4474. doi: 10.1210/endo.137.10.8828509. [DOI] [PubMed] [Google Scholar]
  42. Toyoda K., Shibutani M., Tamura T., Koujitani T., Uneyama C., Hirose M. Repeated dose (28 days) oral toxicity study of flutamide in rats, based on the draft protocol for the 'Enhanced OECD Test Guideline 407' for screening for endocrine-disrupting chemicals. Arch Toxicol. 2000 May;74(3):127–132. doi: 10.1007/s002040050664. [DOI] [PubMed] [Google Scholar]
  43. Truss M., Beato M. Steroid hormone receptors: interaction with deoxyribonucleic acid and transcription factors. Endocr Rev. 1993 Aug;14(4):459–479. doi: 10.1210/edrv-14-4-459. [DOI] [PubMed] [Google Scholar]
  44. Uhnák J., Szokolay A. Criteria for evaluating pesticide residues in children's diet. Czech Med. 1983;6(2):80–85. [PubMed] [Google Scholar]
  45. Weber K. S., Setchell K. D., Stocco D. M., Lephart E. D. Dietary soy-phytoestrogens decrease testosterone levels and prostate weight without altering LH, prostate 5alpha-reductase or testicular steroidogenic acute regulatory peptide levels in adult male Sprague-Dawley rats. J Endocrinol. 2001 Sep;170(3):591–599. doi: 10.1677/joe.0.1700591. [DOI] [PubMed] [Google Scholar]
  46. Weston T. L., Aronson K. J., Siemiatycki J., Howe G. R., Nadon L. Cancer mortality among males in relation to exposures assessed through a job-exposure matrix. Int J Occup Environ Health. 2000 Jul-Sep;6(3):194–202. doi: 10.1179/oeh.2000.6.3.194. [DOI] [PubMed] [Google Scholar]
  47. Wolf C., Jr, Lambright C., Mann P., Price M., Cooper R. L., Ostby J., Gray L. E., Jr Administration of potentially antiandrogenic pesticides (procymidone, linuron, iprodione, chlozolinate, p,p'-DDE, and ketoconazole) and toxic substances (dibutyl- and diethylhexyl phthalate, PCB 169, and ethane dimethane sulphonate) during sexual differentiation produces diverse profiles of reproductive malformations in the male rat. Toxicol Ind Health. 1999 Jan-Mar;15(1-2):94–118. doi: 10.1177/074823379901500109. [DOI] [PubMed] [Google Scholar]
  48. Wong C., Kelce W. R., Sar M., Wilson E. M. Androgen receptor antagonist versus agonist activities of the fungicide vinclozolin relative to hydroxyflutamide. J Biol Chem. 1995 Aug 25;270(34):19998–20003. doi: 10.1074/jbc.270.34.19998. [DOI] [PubMed] [Google Scholar]
  49. Yan Y., Sheppard P. C., Kasper S., Lin L., Hoare S., Kapoor A., Dodd J. G., Duckworth M. L., Matusik R. J. Large fragment of the probasin promoter targets high levels of transgene expression to the prostate of transgenic mice. Prostate. 1997 Jul 1;32(2):129–139. doi: 10.1002/(sici)1097-0045(19970701)32:2<129::aid-pros8>3.0.co;2-h. [DOI] [PubMed] [Google Scholar]
  50. Zhou Z. X., Lane M. V., Kemppainen J. A., French F. S., Wilson E. M. Specificity of ligand-dependent androgen receptor stabilization: receptor domain interactions influence ligand dissociation and receptor stability. Mol Endocrinol. 1995 Feb;9(2):208–218. doi: 10.1210/mend.9.2.7776971. [DOI] [PubMed] [Google Scholar]
  51. van Raaij J. A., Frijters C. M., Kong L. W., van den Berg K. J., Notten W. R. Reduction of thyroxine uptake into cerebrospinal fluid and rat brain by hexachlorobenzene and pentachlorophenol. Toxicology. 1994 Nov-Dec;94(1-3):197–208. doi: 10.1016/0300-483x(94)90038-8. [DOI] [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES