Abstract
To identify the size and components related to toxicity of ambient particles, we used a trichotomous impactor to collect 17 sets of particles in three size ranges--submicrometer (diameters < 1 microm; PM1.0, fine (diameters between 1 and 2.5 microm; PM1.0-2.5, and coarse (diameters between 2.5 and 10 microm; PM2.5-10--at stations monitoring background, urban, traffic, and industrial air in Taiwan. Elemental contents, carbon contents, soluble ions, and endotoxin content of particles were determined by X-ray fluorescence spectrometry, thermal analysis, ion chromatography, and the Limulus amebocyte lysate assay, respectively. Human bronchial epithelial BEAS-2B cells were exposed to particle extracts at 100 micro g/mL for 8 hr, and interleukin-8 (IL-8) concentrations in the medium and lipid peroxidation products were measured. Particle-induced tumor necrosis factor-alpha (TNF-alpha) production by mouse macrophage RAW 264.7 cells was also measured. PM1.0 stimulation resulted in significantly higher IL-8 production and lipid peroxidation than PM2.5-10, whereas the responses elicited by PM1.0-2.5 were not significantly higher than blank filters. Untreated and polymyxin B-pretreated PM1.0 also stimulated more TNF-alpha production by RAW 264.7 cells than PM2.5-10 and PM1.0-2.5. Cytokine production was significantly associated with metal contents of PM1.0: IL-8 correlated with Cr and Mn, and TNF-alpha correlated with Fe and Cr. Lipid peroxidation in BEAS-2B cells correlated with elemental and organic carbon contents. Our study found that size and composition of ambient particles were both important factors in inducing cytokine production and lipid peroxidation.
Full Text
The Full Text of this article is available as a PDF (160.3 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Becker S., Soukup J. M., Gilmour M. I., Devlin R. B. Stimulation of human and rat alveolar macrophages by urban air particulates: effects on oxidant radical generation and cytokine production. Toxicol Appl Pharmacol. 1996 Dec;141(2):637–648. doi: 10.1006/taap.1996.0330. [DOI] [PubMed] [Google Scholar]
- Bonvallot V., Baeza-Squiban A., Baulig A., Brulant S., Boland S., Muzeau F., Barouki R., Marano F. Organic compounds from diesel exhaust particles elicit a proinflammatory response in human airway epithelial cells and induce cytochrome p450 1A1 expression. Am J Respir Cell Mol Biol. 2001 Oct;25(4):515–521. doi: 10.1165/ajrcmb.25.4.4515. [DOI] [PubMed] [Google Scholar]
- Broeckaert F., Buchet J. P., Delos M., Yager J. W., Lison D. Coal fly ash- and copper smelter dust-induced modulation of ex vivo production of tumor necrosis factor-alpha by murine macrophages: effects of metals and overload. J Toxicol Environ Health A. 1999 Mar 12;56(5):343–360. doi: 10.1080/009841099158042. [DOI] [PubMed] [Google Scholar]
- Brown D. M., Stone V., Findlay P., MacNee W., Donaldson K. Increased inflammation and intracellular calcium caused by ultrafine carbon black is independent of transition metals or other soluble components. Occup Environ Med. 2000 Oct;57(10):685–691. doi: 10.1136/oem.57.10.685. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cohen M. D., Zelikoff J. T., Chen L. C., Schlesinger R. B. Immunotoxicologic effects of inhaled chromium: role of particle solubility and co-exposure to ozone. Toxicol Appl Pharmacol. 1998 Sep;152(1):30–40. doi: 10.1006/taap.1998.8502. [DOI] [PubMed] [Google Scholar]
- Dye J. A., Adler K. B., Richards J. H., Dreher K. L. Role of soluble metals in oil fly ash-induced airway epithelial injury and cytokine gene expression. Am J Physiol. 1999 Sep;277(3 Pt 1):L498–L510. doi: 10.1152/ajplung.1999.277.3.L498. [DOI] [PubMed] [Google Scholar]
- Garçon G., Shirali P., Garry S., Fontaine M., Zerimech F., Martin A., Hannothiaux M. H. Polycyclic aromatic hydrocarbon coated onto Fe(2)O(3) particles: assessment of cellular membrane damage and antioxidant system disruption in human epithelial lung cells (L132) in culture. Toxicol Lett. 2000 Sep 30;117(1-2):25–35. doi: 10.1016/s0378-4274(00)00231-9. [DOI] [PubMed] [Google Scholar]
- Ghio A. J., Stonehuerner J., Dailey L. A., Carter J. D. Metals associated with both the water-soluble and insoluble fractions of an ambient air pollution particle catalyze an oxidative stress. Inhal Toxicol. 1999 Jan;11(1):37–49. doi: 10.1080/089583799197258. [DOI] [PubMed] [Google Scholar]
- Goldsmith C. A., Imrich A., Danaee H., Ning Y. Y., Kobzik L. Analysis of air pollution particulate-mediated oxidant stress in alveolar macrophages. J Toxicol Environ Health A. 1998 Aug 7;54(7):529–545. doi: 10.1080/009841098158683. [DOI] [PubMed] [Google Scholar]
- Huang Song-Lih, Cheng Wen-Ling, Lee Chung-Te, Huang Hsin-Cheng, Chan Chang-Chuan. Contribution of endotoxin in macrophage cytokine response to ambient particles in vitro. J Toxicol Environ Health A. 2002 Sep 13;65(17):1261–1272. doi: 10.1080/152873902760125741. [DOI] [PubMed] [Google Scholar]
- Imrich A., Ning Y. Y., Kobzik L. Intracellular oxidant production and cytokine responses in lung macrophages: evaluation of fluorescent probes. J Leukoc Biol. 1999 Apr;65(4):499–507. doi: 10.1002/jlb.65.4.499. [DOI] [PubMed] [Google Scholar]
- Imrich A., Ning Y., Kobzik L. Insoluble components of concentrated air particles mediate alveolar macrophage responses in vitro. Toxicol Appl Pharmacol. 2000 Sep 1;167(2):140–150. doi: 10.1006/taap.2000.9002. [DOI] [PubMed] [Google Scholar]
- Jiménez L. A., Thompson J., Brown D. A., Rahman I., Antonicelli F., Duffin R., Drost E. M., Hay R. T., Donaldson K., MacNee W. Activation of NF-kappaB by PM(10) occurs via an iron-mediated mechanism in the absence of IkappaB degradation. Toxicol Appl Pharmacol. 2000 Jul 15;166(2):101–110. doi: 10.1006/taap.2000.8957. [DOI] [PubMed] [Google Scholar]
- Monn C., Becker S. Cytotoxicity and induction of proinflammatory cytokines from human monocytes exposed to fine (PM2.5) and coarse particles (PM10-2.5) in outdoor and indoor air. Toxicol Appl Pharmacol. 1999 Mar 15;155(3):245–252. doi: 10.1006/taap.1998.8591. [DOI] [PubMed] [Google Scholar]
- Prahalad A. K., Soukup J. M., Inmon J., Willis R., Ghio A. J., Becker S., Gallagher J. E. Ambient air particles: effects on cellular oxidant radical generation in relation to particulate elemental chemistry. Toxicol Appl Pharmacol. 1999 Jul 15;158(2):81–91. doi: 10.1006/taap.1999.8701. [DOI] [PubMed] [Google Scholar]
- Samet J. M., Graves L. M., Quay J., Dailey L. A., Devlin R. B., Ghio A. J., Wu W., Bromberg P. A., Reed W. Activation of MAPKs in human bronchial epithelial cells exposed to metals. Am J Physiol. 1998 Sep;275(3 Pt 1):L551–L558. doi: 10.1152/ajplung.1998.275.3.L551. [DOI] [PubMed] [Google Scholar]
- Schlüter T., Berg I., Dörger M., Gercken G. Effect of heavy metal ions on the release of reactive oxygen intermediates by bovine alveolar macrophages. Toxicology. 1995 Apr 12;98(1-3):47–55. doi: 10.1016/0300-483x(94)02959-x. [DOI] [PubMed] [Google Scholar]
- Smith K. R., Veranth J. M., Hu A. A., Lighty J. S., Aust A. E. Interleukin-8 levels in human lung epithelial cells are increased in response to coal fly ash and vary with the bioavailability of iron, as a function of particle size and source of coal. Chem Res Toxicol. 2000 Feb;13(2):118–125. doi: 10.1021/tx9901736. [DOI] [PubMed] [Google Scholar]
- Soukup J. M., Becker S. Human alveolar macrophage responses to air pollution particulates are associated with insoluble components of coarse material, including particulate endotoxin. Toxicol Appl Pharmacol. 2001 Feb 15;171(1):20–26. doi: 10.1006/taap.2000.9096. [DOI] [PubMed] [Google Scholar]
- Stringer B., Imrich A., Kobzik L. Lung epithelial cell (A549) interaction with unopsonized environmental particulates: quantitation of particle-specific binding and IL-8 production. Exp Lung Res. 1996 Sep-Oct;22(5):495–508. doi: 10.3109/01902149609046038. [DOI] [PubMed] [Google Scholar]