Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 2003 Apr;111(4):488–496. doi: 10.1289/ehp.5500

Environmental estrogens alter early development in Xenopus laevis.

Cassandra L Bevan 1, Donna M Porter 1, Anita Prasad 1, Marthe J Howard 1, Leslie P Henderson 1
PMCID: PMC1241433  PMID: 12676604

Abstract

A growing number of environmental toxicants found in pesticides, herbicides, and industrial solvents are believed to have deleterious effects on development by disrupting hormone-sensitive processes. We exposed Xenopus laevis embryos at early gastrula to the commonly encountered environmental estrogens nonylphenol, octylphenol, and methoxychlor, the antiandrogen, p,p-DDE, or the synthetic androgen, 17 alpha-methyltestosterone at concentrations ranging from 10 nM to 10 microM and examined them at tailbud stages (approximately 48 hr of treatment). Exposure to the three environmental estrogens, as well as to the natural estrogen 17 beta-estradiol, increased mortality, induced morphologic deformations, increased apoptosis, and altered the deposition and differentiation of neural crest-derived melanocytes in tailbud stage embryos. Although neural crest-derived melanocytes were markedly altered in embryos treated with estrogenic toxicants, expression of the early neural crest maker Xslug, a factor that regulates both the induction and subsequent migration of neural crest cells, was not affected, suggesting that the disruption induced by these compounds with respect to melanocyte development may occur at later stages of their differentiation. Co-incubation of embryos with the pure antiestrogen ICI 182,780 blocked the ability of nonylphenol to induce abnormalities in body shape and in melanocyte differentiation but did not block the effects of methoxychlor. Our data indicate not only that acute exposure to these environmental estrogens induces deleterious effects on early vertebrate development but also that different environmental estrogens may alter the fate of a specific cell type via different mechanisms. Finally, our data suggest that the differentiation of neural crest-derived melanocytes may be particularly sensitive to the disruptive actions of these ubiquitous chemical contaminants.

Full Text

The Full Text of this article is available as a PDF (839.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Borchers A., Epperlein H. H., Wedlich D. An assay system to study migratory behavior of cranial neural crest cells in Xenopus. Dev Genes Evol. 2000 Apr;210(4):217–222. doi: 10.1007/s004270050307. [DOI] [PubMed] [Google Scholar]
  2. Carl T. F., Dufton C., Hanken J., Klymkowsky M. W. Inhibition of neural crest migration in Xenopus using antisense slug RNA. Dev Biol. 1999 Sep 1;213(1):101–115. doi: 10.1006/dbio.1999.9320. [DOI] [PubMed] [Google Scholar]
  3. Chao M. V., Hempstead B. L. p75 and Trk: a two-receptor system. Trends Neurosci. 1995 Jul;18(7):321–326. [PubMed] [Google Scholar]
  4. Colborn T., vom Saal F. S., Soto A. M. Developmental effects of endocrine-disrupting chemicals in wildlife and humans. Environ Health Perspect. 1993 Oct;101(5):378–384. doi: 10.1289/ehp.93101378. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Collazo A., Bronner-Fraser M., Fraser S. E. Vital dye labelling of Xenopus laevis trunk neural crest reveals multipotency and novel pathways of migration. Development. 1993 Jun;118(2):363–376. doi: 10.1242/dev.118.2.363. [DOI] [PubMed] [Google Scholar]
  6. Cooper R. L., Kavlock R. J. Endocrine disruptors and reproductive development: a weight-of-evidence overview. J Endocrinol. 1997 Feb;152(2):159–166. doi: 10.1677/joe.0.1520159. [DOI] [PubMed] [Google Scholar]
  7. Crews D., Willingham E., Skipper J. K. Endocrine disruptors: present issues, future directions. Q Rev Biol. 2000 Sep;75(3):243–260. doi: 10.1086/393498. [DOI] [PubMed] [Google Scholar]
  8. Cummings A. M. Methoxychlor as a model for environmental estrogens. Crit Rev Toxicol. 1997 Jul;27(4):367–379. doi: 10.3109/10408449709089899. [DOI] [PubMed] [Google Scholar]
  9. Diel Patrick, Olff Sabine, Schmidt Simone, Michna Horst. Effects of the environmental estrogens bisphenol A, o,p'-DDT, p-tert-octylphenol and coumestrol on apoptosis induction, cell proliferation and the expression of estrogen sensitive molecular parameters in the human breast cancer cell line MCF-7. J Steroid Biochem Mol Biol. 2002 Jan;80(1):61–70. doi: 10.1016/s0960-0760(01)00173-x. [DOI] [PubMed] [Google Scholar]
  10. Ekelund R., Bergman A., Granmo A., Berggren M. Bioaccumulation of 4-nonylphenol in marine animals--a re-evaluation. Environ Pollut. 1990;64(2):107–120. doi: 10.1016/0269-7491(90)90108-o. [DOI] [PubMed] [Google Scholar]
  11. Epperlein H. H., Löfberg J., Olsson L. Neural crest cell migration and pigment pattern formation in urodele amphibians. Int J Dev Biol. 1996 Feb;40(1):229–238. [PubMed] [Google Scholar]
  12. Epperlein H. H., Löfberg J. The development of the neural crest in amphibians. Ann Anat. 1993 Dec;175(6):483–499. doi: 10.1016/s0940-9602(11)80207-4. [DOI] [PubMed] [Google Scholar]
  13. Fariñas I. Neurotrophin actions during the development of the peripheral nervous system. 1999 May 15-Jun 1Microsc Res Tech. 45(4-5):233–242. doi: 10.1002/(SICI)1097-0029(19990515/01)45:4/5<233::AID-JEMT7>3.0.CO;2-Y. [DOI] [PubMed] [Google Scholar]
  14. Ghosh D., Taylor J. A., Green J. A., Lubahn D. B. Methoxychlor stimulates estrogen-responsive messenger ribonucleic acids in mouse uterus through a non-estrogen receptor (non-ER) alpha and non-ER beta mechanism. Endocrinology. 1999 Aug;140(8):3526–3533. doi: 10.1210/endo.140.8.6877. [DOI] [PubMed] [Google Scholar]
  15. Graham A., Koentges G., Lumsden A. Neural crest apoptosis and the establishment of craniofacial pattern: an honorable death. Mol Cell Neurosci. 1996;8(2-3):76–83. doi: 10.1006/mcne.1996.0046. [DOI] [PubMed] [Google Scholar]
  16. Harland R. M. In situ hybridization: an improved whole-mount method for Xenopus embryos. Methods Cell Biol. 1991;36:685–695. doi: 10.1016/s0091-679x(08)60307-6. [DOI] [PubMed] [Google Scholar]
  17. Hemavathy K., Ashraf S. I., Ip Y. T. Snail/slug family of repressors: slowly going into the fast lane of development and cancer. Gene. 2000 Oct 17;257(1):1–12. doi: 10.1016/s0378-1119(00)00371-1. [DOI] [PubMed] [Google Scholar]
  18. Henderson L. P., Smith M. A., Spitzer N. C. The absence of calcium blocks impulse-evoked release of acetylcholine but not de novo formation of functional neuromuscular synaptic contacts in culture. J Neurosci. 1984 Dec;4(12):3140–3150. doi: 10.1523/JNEUROSCI.04-12-03140.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Hensey C., Gautier J. Programmed cell death during Xenopus development: a spatio-temporal analysis. Dev Biol. 1998 Nov 1;203(1):36–48. doi: 10.1006/dbio.1998.9028. [DOI] [PubMed] [Google Scholar]
  20. Howell A., Osborne C. K., Morris C., Wakeling A. E. ICI 182,780 (Faslodex): development of a novel, "pure" antiestrogen. Cancer. 2000 Aug 15;89(4):817–825. doi: 10.1002/1097-0142(20000815)89:4<817::aid-cncr14>3.0.co;2-6. [DOI] [PubMed] [Google Scholar]
  21. Hughes P. J., McLellan H., Lowes D. A., Kahn S. Z., Bilmen J. G., Tovey S. C., Godfrey R. E., Michell R. H., Kirk C. J., Michelangeli F. Estrogenic alkylphenols induce cell death by inhibiting testis endoplasmic reticulum Ca(2+) pumps. Biochem Biophys Res Commun. 2000 Nov 2;277(3):568–574. doi: 10.1006/bbrc.2000.3710. [DOI] [PubMed] [Google Scholar]
  22. Jezierski M. K., Sturm A. K., Scarborough M. M., Sohrabji F. NGF stimulation increases JNK2 phosphorylation and reduces caspase-3 activity in the olfactory bulb of estrogen-replaced animals. Endocrinology. 2001 Jun;142(6):2401–2401. doi: 10.1210/endo.142.6.8316. [DOI] [PubMed] [Google Scholar]
  23. Kavlock R. J. Overview of endocrine disruptor research activity in the United States. Chemosphere. 1999 Oct;39(8):1227–1236. doi: 10.1016/s0045-6535(99)00190-3. [DOI] [PubMed] [Google Scholar]
  24. Kelce W. R., Gray L. E., Wilson E. M. Antiandrogens as environmental endocrine disruptors. Reprod Fertil Dev. 1998;10(1):105–111. doi: 10.1071/r98051. [DOI] [PubMed] [Google Scholar]
  25. Kloas W., Lutz I., Einspanier R. Amphibians as a model to study endocrine disruptors: II. Estrogenic activity of environmental chemicals in vitro and in vivo. Sci Total Environ. 1999 Jan 12;225(1-2):59–68. doi: 10.1016/s0048-9697(99)80017-5. [DOI] [PubMed] [Google Scholar]
  26. Krotoski D. M., Fraser S. E., Bronner-Fraser M. Mapping of neural crest pathways in Xenopus laevis using inter- and intra-specific cell markers. Dev Biol. 1988 May;127(1):119–132. doi: 10.1016/0012-1606(88)90194-7. [DOI] [PubMed] [Google Scholar]
  27. LaBonne C., Bronner-Fraser M. Neural crest induction in Xenopus: evidence for a two-signal model. Development. 1998 Jul;125(13):2403–2414. doi: 10.1242/dev.125.13.2403. [DOI] [PubMed] [Google Scholar]
  28. Lewin G. R., Barde Y. A. Physiology of the neurotrophins. Annu Rev Neurosci. 1996;19:289–317. doi: 10.1146/annurev.ne.19.030196.001445. [DOI] [PubMed] [Google Scholar]
  29. Linker C., Bronner-Fraser M., Mayor R. Relationship between gene expression domains of Xsnail, Xslug, and Xtwist and cell movement in the prospective neural crest of Xenopus. Dev Biol. 2000 Aug 15;224(2):215–225. doi: 10.1006/dbio.2000.9723. [DOI] [PubMed] [Google Scholar]
  30. Lutz I., Kloas W. Amphibians as a model to study endocrine disruptors: I. Environmental pollution and estrogen receptor binding. Sci Total Environ. 1999 Jan 12;225(1-2):49–57. doi: 10.1016/s0048-9697(99)80016-3. [DOI] [PubMed] [Google Scholar]
  31. Mann R. M., Bidwell J. R. Application of the FETAX protocol to assess the developmental toxicity of nonylphenol ethoxylate to Xenopus laevis and two Australian frogs. Aquat Toxicol. 2000 Nov;51(1):19–29. doi: 10.1016/s0166-445x(00)00106-5. [DOI] [PubMed] [Google Scholar]
  32. Mayor R., Morgan R., Sargent M. G. Induction of the prospective neural crest of Xenopus. Development. 1995 Mar;121(3):767–777. doi: 10.1242/dev.121.3.767. [DOI] [PubMed] [Google Scholar]
  33. Mayor R., Young R., Vargas A. Development of neural crest in Xenopus. Curr Top Dev Biol. 1999;43:85–113. doi: 10.1016/s0070-2153(08)60379-8. [DOI] [PubMed] [Google Scholar]
  34. McLeod S. D., Ranson M., Mason R. S. Effects of estrogens on human melanocytes in vitro. J Steroid Biochem Mol Biol. 1994 May;49(1):9–14. doi: 10.1016/0960-0760(94)90295-x. [DOI] [PubMed] [Google Scholar]
  35. Menditto A., Turrio-Baldassarri L. Environmental and biological monitoring of endocrine disrupting chemicals. Chemosphere. 1999 Oct;39(8):1301–1307. doi: 10.1016/s0045-6535(99)00198-8. [DOI] [PubMed] [Google Scholar]
  36. Miranda R. C., Sohrabji F., Toran-Allerand D. Interactions of estrogen with the neurotrophins and their receptors during neural development. Horm Behav. 1994 Dec;28(4):367–375. doi: 10.1006/hbeh.1994.1033. [DOI] [PubMed] [Google Scholar]
  37. Mueller G. C., Kim U. H. Displacement of estradiol from estrogen receptors by simple alkyl phenols. Endocrinology. 1978 May;102(5):1429–1435. doi: 10.1210/endo-102-5-1429. [DOI] [PubMed] [Google Scholar]
  38. Nishimura N., Fukazawa Y., Uchiyama H., Iguchi T. Effects of estrogenic hormones on early development of Xenopus laevis. J Exp Zool. 1997 Jul 1;278(4):221–233. doi: 10.1002/(sici)1097-010x(19970701)278:4<221::aid-jez3>3.0.co;2-r. [DOI] [PubMed] [Google Scholar]
  39. Palanza P., Morellini F., Parmigiani S., vom Saal F. S. Prenatal exposure to endocrine disrupting chemicals: effects on behavioral development. Neurosci Biobehav Rev. 1999 Nov;23(7):1011–1027. doi: 10.1016/s0149-7634(99)00033-0. [DOI] [PubMed] [Google Scholar]
  40. Quincey R. V., Gray C. H. The metabolism of [1,2-3H]17-alpha-methyltestosterone in human subjects. J Endocrinol. 1967 Jan;37(1):37–55. doi: 10.1677/joe.0.0370037. [DOI] [PubMed] [Google Scholar]
  41. Ren L., Marquardt M. A., Lech J. J. Estrogenic effects of nonylphenol on pS2, ER and MUC1 gene expression in human breast cancer cells-MCF-7. Chem Biol Interact. 1997 Apr 18;104(1):55–64. doi: 10.1016/s0009-2797(97)03767-8. [DOI] [PubMed] [Google Scholar]
  42. Safe S. H., Pallaroni L., Yoon K., Gaido K., Ross S., Saville B., McDonnellc D. Toxicology of environmental estrogens. Reprod Fertil Dev. 2001;13(4):307–315. doi: 10.1071/rd00108. [DOI] [PubMed] [Google Scholar]
  43. Sastry P. S., Rao K. S. Apoptosis and the nervous system. J Neurochem. 2000 Jan;74(1):1–20. doi: 10.1046/j.1471-4159.2000.0740001.x. [DOI] [PubMed] [Google Scholar]
  44. Sharara F. I., Seifer D. B., Flaws J. A. Environmental toxicants and female reproduction. Fertil Steril. 1998 Oct;70(4):613–622. doi: 10.1016/s0015-0282(98)00253-2. [DOI] [PubMed] [Google Scholar]
  45. Sieber-Blum M., Zhang J. M. Growth factor action in neural crest cell diversification. J Anat. 1997 Nov;191(Pt 4):493–499. doi: 10.1046/j.1469-7580.1997.19140493.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Sohoni P., Sumpter J. P. Several environmental oestrogens are also anti-androgens. J Endocrinol. 1998 Sep;158(3):327–339. doi: 10.1677/joe.0.1580327. [DOI] [PubMed] [Google Scholar]
  47. Sohrabji F., Miranda R. C., Toran-Allerand C. D. Identification of a putative estrogen response element in the gene encoding brain-derived neurotrophic factor. Proc Natl Acad Sci U S A. 1995 Nov 21;92(24):11110–11114. doi: 10.1073/pnas.92.24.11110. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Sonnenschein C., Soto A. M. An updated review of environmental estrogen and androgen mimics and antagonists. J Steroid Biochem Mol Biol. 1998 Apr;65(1-6):143–150. doi: 10.1016/s0960-0760(98)00027-2. [DOI] [PubMed] [Google Scholar]
  49. Spitzer N. C., Ribera A. B. Development of electrical excitability in embryonic neurons: mechanisms and roles. J Neurobiol. 1998 Oct;37(1):190–197. [PubMed] [Google Scholar]
  50. Toran-Allerand C. D. Mechanisms of estrogen action during neural development: mediation by interactions with the neurotrophins and their receptors? J Steroid Biochem Mol Biol. 1996 Jan;56(1-6):169–178. doi: 10.1016/0960-0760(95)00234-0. [DOI] [PubMed] [Google Scholar]
  51. Tsatmali Marina, Ancans Janis, Thody Anthony J. Melanocyte function and its control by melanocortin peptides. J Histochem Cytochem. 2002 Feb;50(2):125–133. doi: 10.1177/002215540205000201. [DOI] [PubMed] [Google Scholar]
  52. Wade S. B., Oommen P., Conner W. C., Earnest D. J., Miranda R. C. Overlapping and divergent actions of estrogen and the neurotrophins on cell fate and p53-dependent signal transduction in conditionally immortalized cerebral cortical neuroblasts. J Neurosci. 1999 Aug 15;19(16):6994–7006. doi: 10.1523/JNEUROSCI.19-16-06994.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Wakamatsu Y., Mochii M., Vogel K. S., Weston J. A. Avian neural crest-derived neurogenic precursors undergo apoptosis on the lateral migration pathway. Development. 1998 Nov;125(21):4205–4213. doi: 10.1242/dev.125.21.4205. [DOI] [PubMed] [Google Scholar]
  54. Wakeling A. E., Dukes M., Bowler J. A potent specific pure antiestrogen with clinical potential. Cancer Res. 1991 Aug 1;51(15):3867–3873. [PubMed] [Google Scholar]
  55. Waters K. M., Safe S., Gaido K. W. Differential gene expression in response to methoxychlor and estradiol through ERalpha, ERbeta, and AR in reproductive tissues of female mice. Toxicol Sci. 2001 Sep;63(1):47–56. doi: 10.1093/toxsci/63.1.47. [DOI] [PubMed] [Google Scholar]
  56. Weber Lynn P., Kiparissis Yiannis, Hwang Gap S., Niimi Arthur J., Janz David M., Metcalfe Chris D. Increased cellular apoptosis after chronic aqueous exposure to nonylphenol and quercetin in adult medaka (Oryzias latipes). Comp Biochem Physiol C Toxicol Pharmacol. 2002 Jan;131(1):51–59. doi: 10.1016/s1532-0456(01)00276-9. [DOI] [PubMed] [Google Scholar]
  57. Weinstein D. C., Hemmati-Brivanlou A. Neural induction. Annu Rev Cell Dev Biol. 1999;15:411–433. doi: 10.1146/annurev.cellbio.15.1.411. [DOI] [PubMed] [Google Scholar]
  58. White R., Jobling S., Hoare S. A., Sumpter J. P., Parker M. G. Environmentally persistent alkylphenolic compounds are estrogenic. Endocrinology. 1994 Jul;135(1):175–182. doi: 10.1210/endo.135.1.8013351. [DOI] [PubMed] [Google Scholar]
  59. Yaar M., Eller M. S., DiBenedetto P., Reenstra W. R., Zhai S., McQuaid T., Archambault M., Gilchrest B. A. The trk family of receptors mediates nerve growth factor and neurotrophin-3 effects in melanocytes. J Clin Invest. 1994 Oct;94(4):1550–1562. doi: 10.1172/JCI117496. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Younes M. Specific issues in health risk assessment of endocrine disrupting chemicals and international activities. Chemosphere. 1999 Oct;39(8):1253–1257. doi: 10.1016/s0045-6535(99)00193-9. [DOI] [PubMed] [Google Scholar]
  61. Zhao F., Weismann C. G., Satoda M., Pierpont M. E., Sweeney E., Thompson E. M., Gelb B. D. Novel TFAP2B mutations that cause Char syndrome provide a genotype-phenotype correlation. Am J Hum Genet. 2001 Aug 14;69(4):695–703. doi: 10.1086/323410. [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. van Mier P., Armstrong J., Roberts A. Development of early swimming in Xenopus laevis embryos: myotomal musculature, its innervation and activation. Neuroscience. 1989;32(1):113–126. doi: 10.1016/0306-4522(89)90111-5. [DOI] [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES