Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 2003 Apr;111(4):503–508. doi: 10.1289/ehp.5917

Antiandrogenic activity and metabolism of the organophosphorus pesticide fenthion and related compounds.

Shigeyuki Kitamura 1, Tomoharu Suzuki 1, Shigeru Ohta 1, Nariaki Fujimoto 1
PMCID: PMC1241435  PMID: 12676606

Abstract

We investigated the endocrine-disrupting actions of the organophosphorus pesticide fenthion and related compounds and the influence of metabolic transformation on the activities of these compounds. Fenthion acted as an antagonist of the androgenic activity of dihydrotestosterone (10(-7)M) in the concentration range of 10(-6)-10(-4)M in an androgen-responsive element-luciferase reporter-responsive assay using NIH3T3 cells. The antiandrogenic activity of fenthion was similar in magnitude to that of flutamide. Fenthion also tested positive in the Hershberger assay using castrated male rats. Marked estrogenic and antiestrogenic activities of fenthion and related compounds were not observed in MCF-7 cells. When fenthion was incubated with rat liver microsomes in the presence of NADPH, the antiandrogenic activity markedly decreased, and fenthion sulfoxide was detected as a major metabolite. The oxidase activity toward fenthion was exhibited by cytochrome P450 and flavin-containing monooxygenase. Fenthion sulfoxide was negative in the screening test for antiandrogens, as was fenthion sulfone. However, when fenthion sulfoxide was incubated with liver cytosol in the presence of 2-hydroxypyrimidine, an electron donor of aldehyde oxidase, the extract of the incubation mixture exhibited antiandrogenic activity. In this case, fenthion was detected as a major metabolite of the sulfoxide. Metabolic interconversion between fenthion and fenthion sulfoxide in the body seems to maintain the antiandrogenic activity.

Full Text

The Full Text of this article is available as a PDF (191.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andersen H. R., Andersson A. M., Arnold S. F., Autrup H., Barfoed M., Beresford N. A., Bjerregaard P., Christiansen L. B., Gissel B., Hummel R. Comparison of short-term estrogenicity tests for identification of hormone-disrupting chemicals. Environ Health Perspect. 1999 Feb;107 (Suppl 1):89–108. doi: 10.1289/ehp.99107s189. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ashby J., Lefevre P. A. The peripubertal male rat assay as an alternative to the Hershberger castrated male rat assay for the detection of anti-androgens, oestrogens and metabolic modulators. J Appl Toxicol. 2000 Jan-Feb;20(1):35–47. doi: 10.1002/(sici)1099-1263(200001/02)20:1<35::aid-jat633>3.0.co;2-8. [DOI] [PubMed] [Google Scholar]
  3. Benoit E., Cresteil T., Riviere J. L., Delatour P. Specific and enantioselective sulfoxidation of an aryl-trifluoromethyl sulfide by rat liver cytochromes P-450. Drug Metab Dispos. 1992 Nov-Dec;20(6):877–881. [PubMed] [Google Scholar]
  4. Cavanna S., Molinari G. P. Residues of fenthion and trichloron in olives and olive oil after olive tree treatments. Food Addit Contam. 1998 Jul;15(5):518–527. doi: 10.1080/02652039809374676. [DOI] [PubMed] [Google Scholar]
  5. Charles G. D., Bartels M. J., Zacharewski T. R., Gollapudi B. B., Freshour N. L., Carney E. W. Activity of benzo[a]pyrene and its hydroxylated metabolites in an estrogen receptor-alpha reporter gene assay. Toxicol Sci. 2000 Jun;55(2):320–326. doi: 10.1093/toxsci/55.2.320. [DOI] [PubMed] [Google Scholar]
  6. Chen C. W., Hurd C., Vorojeikina D. P., Arnold S. F., Notides A. C. Transcriptional activation of the human estrogen receptor by DDT isomers and metabolites in yeast and MCF-7 cells. Biochem Pharmacol. 1997 Apr 25;53(8):1161–1172. doi: 10.1016/s0006-2952(97)00097-x. [DOI] [PubMed] [Google Scholar]
  7. Connor K., Ramamoorthy K., Moore M., Mustain M., Chen I., Safe S., Zacharewski T., Gillesby B., Joyeux A., Balaguer P. Hydroxylated polychlorinated biphenyls (PCBs) as estrogens and antiestrogens: structure-activity relationships. Toxicol Appl Pharmacol. 1997 Jul;145(1):111–123. doi: 10.1006/taap.1997.8169. [DOI] [PubMed] [Google Scholar]
  8. Cova D., Perego R., Nebuloni C., Fontana G., Molinari G. P. In vitro cytotoxicity of fenthion and related metabolites in human neuroblastoma cell lines. Chemosphere. 1995 May;30(9):1709–1715. doi: 10.1016/0045-6535(95)00056-e. [DOI] [PubMed] [Google Scholar]
  9. Curtis L. R. Organophosphate antagonism of the androgen receptor. Toxicol Sci. 2001 Mar;60(1):1–2. doi: 10.1093/toxsci/60.1.1. [DOI] [PubMed] [Google Scholar]
  10. DeBaun J. R., Menn J. J. Sulfoxide reduction in relation to organophosphorus insecticide detoxification. Science. 1976 Jan 16;191(4223):187–188. doi: 10.1126/science.1246606. [DOI] [PubMed] [Google Scholar]
  11. Fertuck K. C., Matthews J. B., Zacharewski T. R. Hydroxylated benzo[a]pyrene metabolites are responsible for in vitro estrogen receptor-mediated gene expression induced by benzo[a]pyrene, but do not elicit uterotrophic effects in vivo. Toxicol Sci. 2001 Feb;59(2):231–240. doi: 10.1093/toxsci/59.2.231. [DOI] [PubMed] [Google Scholar]
  12. Gaido K. W., Leonard L. S., Lovell S., Gould J. C., Babaï D., Portier C. J., McDonnell D. P. Evaluation of chemicals with endocrine modulating activity in a yeast-based steroid hormone receptor gene transcription assay. Toxicol Appl Pharmacol. 1997 Mar;143(1):205–212. doi: 10.1006/taap.1996.8069. [DOI] [PubMed] [Google Scholar]
  13. Gaido K. W., Leonard L. S., Maness S. C., Hall J. M., McDonnell D. P., Saville B., Safe S. Differential interaction of the methoxychlor metabolite 2,2-bis-(p-hydroxyphenyl)-1,1,1-trichloroethane with estrogen receptors alpha and beta. Endocrinology. 1999 Dec;140(12):5746–5753. doi: 10.1210/endo.140.12.7191. [DOI] [PubMed] [Google Scholar]
  14. Garner C. E., Jefferson W. N., Burka L. T., Matthews H. B., Newbold R. R. In vitro estrogenicity of the catechol metabolites of selected polychlorinated biphenyls. Toxicol Appl Pharmacol. 1999 Jan 15;154(2):188–197. doi: 10.1006/taap.1998.8560. [DOI] [PubMed] [Google Scholar]
  15. Gray L. E., Jr, Ostby J. S., Kelce W. R. Developmental effects of an environmental antiandrogen: the fungicide vinclozolin alters sex differentiation of the male rat. Toxicol Appl Pharmacol. 1994 Nov;129(1):46–52. doi: 10.1006/taap.1994.1227. [DOI] [PubMed] [Google Scholar]
  16. Gray L. E., Jr, Ostby J., Monosson E., Kelce W. R. Environmental antiandrogens: low doses of the fungicide vinclozolin alter sexual differentiation of the male rat. Toxicol Ind Health. 1999 Jan-Mar;15(1-2):48–64. doi: 10.1177/074823379901500106. [DOI] [PubMed] [Google Scholar]
  17. HERSHBERGER L. G., SHIPLEY E. G., MEYER R. K. Myotrophic activity of 19-nortestosterone and other steroids determined by modified levator ani muscle method. Proc Soc Exp Biol Med. 1953 May;83(1):175–180. doi: 10.3181/00379727-83-20301. [DOI] [PubMed] [Google Scholar]
  18. Kelce W. R., Monosson E., Gamcsik M. P., Laws S. C., Gray L. E., Jr Environmental hormone disruptors: evidence that vinclozolin developmental toxicity is mediated by antiandrogenic metabolites. Toxicol Appl Pharmacol. 1994 Jun;126(2):276–285. doi: 10.1006/taap.1994.1117. [DOI] [PubMed] [Google Scholar]
  19. Kelce W. R., Stone C. R., Laws S. C., Gray L. E., Kemppainen J. A., Wilson E. M. Persistent DDT metabolite p,p'-DDE is a potent androgen receptor antagonist. Nature. 1995 Jun 15;375(6532):581–585. doi: 10.1038/375581a0. [DOI] [PubMed] [Google Scholar]
  20. Kelce W. R., Wilson E. M. Environmental antiandrogens: developmental effects, molecular mechanisms, and clinical implications. J Mol Med (Berl) 1997 Mar;75(3):198–207. doi: 10.1007/s001090050104. [DOI] [PubMed] [Google Scholar]
  21. Kitamura S., Kadota T., Yoshida M., Jinno N., Ohta S. Whole-body metabolism of the organophosphorus pesticide, fenthion, in goldfish, Carassius auratus. Comp Biochem Physiol C Toxicol Pharmacol. 2000 Jul;126(3):259–266. doi: 10.1016/s0742-8413(00)00124-9. [DOI] [PubMed] [Google Scholar]
  22. Kitamura Shigeyuki, Shimizu Yuri, Shiraga Yuko, Yoshida Mayumi, Sugihara Kazumi, Ohta Shigeru. Reductive metabolism of p,p'-DDT and o,p'-DDT by rat liver cytochrome P450. Drug Metab Dispos. 2002 Feb;30(2):113–118. doi: 10.1124/dmd.30.2.113. [DOI] [PubMed] [Google Scholar]
  23. Korach K. S., Sarver P., Chae K., McLachlan J. A., McKinney J. D. Estrogen receptor-binding activity of polychlorinated hydroxybiphenyls: conformationally restricted structural probes. Mol Pharmacol. 1988 Jan;33(1):120–126. [PubMed] [Google Scholar]
  24. Lambright C., Ostby J., Bobseine K., Wilson V., Hotchkiss A. K., Mann P. C., Gray L. E., Jr Cellular and molecular mechanisms of action of linuron: an antiandrogenic herbicide that produces reproductive malformations in male rats. Toxicol Sci. 2000 Aug;56(2):389–399. doi: 10.1093/toxsci/56.2.389. [DOI] [PubMed] [Google Scholar]
  25. Mc Lane K. E., Fisher J., Ramakrishnan K. Reductive drug metabolism. Drug Metab Rev. 1983;14(4):741–799. doi: 10.3109/03602538308991408. [DOI] [PubMed] [Google Scholar]
  26. McIntyre B. S., Barlow N. J., Wallace D. G., Maness S. C., Gaido K. W., Foster P. M. Effects of in utero exposure to linuron on androgen-dependent reproductive development in the male Crl:CD(SD)BR rat. Toxicol Appl Pharmacol. 2000 Sep 1;167(2):87–99. doi: 10.1006/taap.2000.8998. [DOI] [PubMed] [Google Scholar]
  27. Meyer E., Borrey D., Lambert W., Van Peteghem C., Piette M., De Leenheer A. Analysis of fenthion in postmortem samples by HPLC with diode-array detection and GC-MS using solid-phase extraction. J Anal Toxicol. 1998 May-Jun;22(3):248–252. doi: 10.1093/jat/22.3.248. [DOI] [PubMed] [Google Scholar]
  28. Mitchell S. C., Waring R. H. The early history of xenobiotic sulfoxidation. Drug Metab Rev. 1985;16(3):255–284. doi: 10.3109/03602538508991436. [DOI] [PubMed] [Google Scholar]
  29. Mullié W. C., Diallo A. O., Gadji B., Ndiaye M. D. Environmental hazards of mobile ground spraying with cyanophos and fenthion for quelea control in Senegal. Ecotoxicol Environ Saf. 1999 May;43(1):1–10. doi: 10.1006/eesa.1998.1744. [DOI] [PubMed] [Google Scholar]
  30. Nakagawa Yoshio, Suzuki Toshinari. Metabolism of 2-hydroxy-4-methoxybenzophenone in isolated rat hepatocytes and xenoestrogenic effects of its metabolites on MCF-7 human breast cancer cells. Chem Biol Interact. 2002 Feb 20;139(2):115–128. doi: 10.1016/s0009-2797(01)00293-9. [DOI] [PubMed] [Google Scholar]
  31. Ostby J., Kelce W. R., Lambright C., Wolf C. J., Mann P., Gray L. E., Jr The fungicide procymidone alters sexual differentiation in the male rat by acting as an androgen-receptor antagonist in vivo and in vitro. Toxicol Ind Health. 1999 Jan-Mar;15(1-2):80–93. doi: 10.1177/074823379901500108. [DOI] [PubMed] [Google Scholar]
  32. Peiris H. T., Hemingway J. Effect of fenthion treatment on larval densities of insecticide-resistant Culex quinquefasciatus in an urban area of Sri Lanka. Med Vet Entomol. 1996 Jul;10(3):283–287. doi: 10.1111/j.1365-2915.1996.tb00744.x. [DOI] [PubMed] [Google Scholar]
  33. Prasad M. P., Rajendran G., Sabesan S., Kalyanasundaram M. Field evaluation of biodegradable controlled release formulation of fenthion against Mansonia mosquitos. Southeast Asian J Trop Med Public Health. 1997 Mar;28(1):208–211. [PubMed] [Google Scholar]
  34. Roux D., Jooste S., Truter E., Kempster P. An aquatic toxicological evaluation of fenthion in the context of finch control in South Africa. Ecotoxicol Environ Saf. 1995 Jul;31(2):164–172. doi: 10.1006/eesa.1995.1058. [DOI] [PubMed] [Google Scholar]
  35. Schoor W. P., Middaugh D. P., Marcovich D. T. Effects of aerially applied fenthion on survival and reproduction of the panacea sand fiddler, Uca panacea, in laboratory habitats. Arch Environ Contam Toxicol. 2000 Apr;38(3):327–333. doi: 10.1007/s002449910043. [DOI] [PubMed] [Google Scholar]
  36. Sohoni P., Lefevre P. A., Ashby J., Sumpter J. P. Possible androgenic/anti-androgenic activity of the insecticide fenitrothion. J Appl Toxicol. 2001 May-Jun;21(3):173–178. doi: 10.1002/jat.747. [DOI] [PubMed] [Google Scholar]
  37. Soto A. M., Chung K. L., Sonnenschein C. The pesticides endosulfan, toxaphene, and dieldrin have estrogenic effects on human estrogen-sensitive cells. Environ Health Perspect. 1994 Apr;102(4):380–383. doi: 10.1289/ehp.94102380. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Sugihara K., Kitamura S., Sanoh S., Ohta S., Fujimoto N., Maruyama S., Ito A. Metabolic activation of the proestrogens trans-stilbene and trans-stilbene oxide by rat liver microsomes. Toxicol Appl Pharmacol. 2000 Aug 15;167(1):46–54. doi: 10.1006/taap.2000.8979. [DOI] [PubMed] [Google Scholar]
  39. Sugihara K., Kitamura S., Tatsumi K. Strain differences of liver aldehyde oxidase activity in rats. Biochem Mol Biol Int. 1995 Nov;37(5):861–869. [PubMed] [Google Scholar]
  40. Sunami O., Kunimatsu T., Yamada T., Yabushita S., Sukata T., Miyata K., Kamita Y., Okuno Y., Seki T., Nakatsuka I. Evaluation of a 5-day Hershberger assay using young mature male rats: methyltestosterone and p,p'-DDE, but not fenitrothion, exhibited androgenic or antiandrogenic activity in vivo. J Toxicol Sci. 2000 Dec;25(5):403–415. doi: 10.2131/jts.25.5_403. [DOI] [PubMed] [Google Scholar]
  41. Tamura H., Maness S. C., Reischmann K., Dorman D. C., Gray L. E., Gaido K. W. Androgen receptor antagonism by the organophosphate insecticide fenitrothion. Toxicol Sci. 2001 Mar;60(1):56–62. doi: 10.1093/toxsci/60.1.56. [DOI] [PubMed] [Google Scholar]
  42. Tandon P., Padilla S., Barone S., Jr, Pope C. N., Tilson H. A. Fenthion produces a persistent decrease in muscarinic receptor function in the adult rat retina. Toxicol Appl Pharmacol. 1994 Apr;125(2):271–280. doi: 10.1006/taap.1994.1073. [DOI] [PubMed] [Google Scholar]
  43. Tatsumi K., Kitamura S., Yamada H. Sulfoxide reductase activity of liver aldehyde oxidase. Biochim Biophys Acta. 1983 Sep 14;747(1-2):86–92. doi: 10.1016/0167-4838(83)90125-5. [DOI] [PubMed] [Google Scholar]
  44. Tuler S. M., Bowen J. M. Chronic fenthion toxicity in laying hens. Vet Hum Toxicol. 1999 Oct;41(5):302–307. [PubMed] [Google Scholar]
  45. Wolf C., Jr, Lambright C., Mann P., Price M., Cooper R. L., Ostby J., Gray L. E., Jr Administration of potentially antiandrogenic pesticides (procymidone, linuron, iprodione, chlozolinate, p,p'-DDE, and ketoconazole) and toxic substances (dibutyl- and diethylhexyl phthalate, PCB 169, and ethane dimethane sulphonate) during sexual differentiation produces diverse profiles of reproductive malformations in the male rat. Toxicol Ind Health. 1999 Jan-Mar;15(1-2):94–118. doi: 10.1177/074823379901500109. [DOI] [PubMed] [Google Scholar]
  46. Wong C., Kelce W. R., Sar M., Wilson E. M. Androgen receptor antagonist versus agonist activities of the fungicide vinclozolin relative to hydroxyflutamide. J Biol Chem. 1995 Aug 25;270(34):19998–20003. doi: 10.1074/jbc.270.34.19998. [DOI] [PubMed] [Google Scholar]
  47. You L., Brenneman K. A., Heck H. In utero exposure to antiandrogens alters the responsiveness of the prostate to p,p'-DDE in adult rats and may induce prostatic inflammation. Toxicol Appl Pharmacol. 1999 Dec 15;161(3):258–266. doi: 10.1006/taap.1999.8804. [DOI] [PubMed] [Google Scholar]
  48. Zutshi B., Murthy P. S. Ultrastructural changes in testis of gobiid fish Glossogobius giuris (Ham) induced by fenthion. Indian J Exp Biol. 2001 Feb;39(2):170–173. [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES