Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 2003 Apr;111(4):509–512. doi: 10.1289/ehp.5945

Phosphorylation of p53 protein in A549 human pulmonary epithelial cells exposed to asbestos fibers.

Masato Matsuoka 1, Hideki Igisu 1, Yasuo Morimoto 1
PMCID: PMC1241436  PMID: 12676607

Abstract

We examined effects of asbestos exposure on the phosphorylation of p53 protein in human pulmonary epithelial type II cells (A549), which express wild-type p53. In cells exposed to two different types of asbestos, chrysotile (approximately 1-6% iron content) and crocidolite (approximately 27% iron content) fibers, at the doses of 1, 5, and 10 microg/cm2 for 24 hr, the levels of p53 phosphorylated at Ser15 and p53 protein were correlated with the dose. On a per-weight basis, chrysotile was more potent in inducing Ser15 phosphorylation and accumulation of p53 protein than was crocidolite. After exposure to 10 micro g/cm2 chrysotile, the levels of p53 phosphorylated at Ser15 and of p53 protein increased after 18 hr. Among serines in p53 protein immunoprecipitated from A549 cells treated with chrysotile, only Ser15 was markedly phosphorylated. In contrast, no clear phosphorylation was observed at Ser6, Ser9, Ser20, Ser37, Ser46, or Ser392. Blocking of the extracellular signal-regulated protein kinase pathway with U0126 or inhibition of p38 activity with SB203580 did not suppress chrysotile-induced Ser15 phosphorylation. On the other hand, treatment with wortmannin, an inhibitor of DNA-activated protein kinase and ataxia-telangiectasia mutated, suppressed both chrysotile-induced Ser15 phosphorylation and accumulation of p53 protein. Treatment with either catalase or N-acetylcysteine failed to suppress chrysotile-induced Ser15 phosphorylation, suggesting that reactive oxygen species do not play a major role in the phosphorylation of p53 protein. The present results show that asbestos, particularly chrysotile, induces phosphorylation of p53 protein at Ser15 in A549 cells depending on a DNA damage-signaling pathway.

Full Text

The Full Text of this article is available as a PDF (170.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aikoh T., Tomokuni A., Matsukii T., Hyodoh F., Ueki H., Otsuki T., Ueki A. Activation-induced cell death in human peripheral blood lymphocytes after stimulation with silicate in vitro. Int J Oncol. 1998 Jun;12(6):1355–1359. doi: 10.3892/ijo.12.6.1355. [DOI] [PubMed] [Google Scholar]
  2. Bargonetti Jill, Manfredi James J. Multiple roles of the tumor suppressor p53. Curr Opin Oncol. 2002 Jan;14(1):86–91. doi: 10.1097/00001622-200201000-00015. [DOI] [PubMed] [Google Scholar]
  3. Broaddus V. C., Yang L., Scavo L. M., Ernst J. D., Boylan A. M. Asbestos induces apoptosis of human and rabbit pleural mesothelial cells via reactive oxygen species. J Clin Invest. 1996 Nov 1;98(9):2050–2059. doi: 10.1172/JCI119010. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bulavin D. V., Saito S., Hollander M. C., Sakaguchi K., Anderson C. W., Appella E., Fornace A. J., Jr Phosphorylation of human p53 by p38 kinase coordinates N-terminal phosphorylation and apoptosis in response to UV radiation. EMBO J. 1999 Dec 1;18(23):6845–6854. doi: 10.1093/emboj/18.23.6845. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Canman C. E., Wolff A. C., Chen C. Y., Fornace A. J., Jr, Kastan M. B. The p53-dependent G1 cell cycle checkpoint pathway and ataxia-telangiectasia. Cancer Res. 1994 Oct 1;54(19):5054–5058. [PubMed] [Google Scholar]
  6. Cuenda A., Rouse J., Doza Y. N., Meier R., Cohen P., Gallagher T. F., Young P. R., Lee J. C. SB 203580 is a specific inhibitor of a MAP kinase homologue which is stimulated by cellular stresses and interleukin-1. FEBS Lett. 1995 May 8;364(2):229–233. doi: 10.1016/0014-5793(95)00357-f. [DOI] [PubMed] [Google Scholar]
  7. Dopp E., Nebe B., Hahnel C., Papp T., Alonso B., Simkó M., Schiffmann D. Mineral fibers induce apoptosis in Syrian hamster embryo fibroblasts. Pathobiology. 1995;63(4):213–221. doi: 10.1159/000163954. [DOI] [PubMed] [Google Scholar]
  8. Dumaz N., Meek D. W. Serine15 phosphorylation stimulates p53 transactivation but does not directly influence interaction with HDM2. EMBO J. 1999 Dec 15;18(24):7002–7010. doi: 10.1093/emboj/18.24.7002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Favata M. F., Horiuchi K. Y., Manos E. J., Daulerio A. J., Stradley D. A., Feeser W. S., Van Dyk D. E., Pitts W. J., Earl R. A., Hobbs F. Identification of a novel inhibitor of mitogen-activated protein kinase kinase. J Biol Chem. 1998 Jul 17;273(29):18623–18632. doi: 10.1074/jbc.273.29.18623. [DOI] [PubMed] [Google Scholar]
  10. Giaccia A. J., Kastan M. B. The complexity of p53 modulation: emerging patterns from divergent signals. Genes Dev. 1998 Oct 1;12(19):2973–2983. doi: 10.1101/gad.12.19.2973. [DOI] [PubMed] [Google Scholar]
  11. Gottlieb T. M., Jackson S. P. The DNA-dependent protein kinase: requirement for DNA ends and association with Ku antigen. Cell. 1993 Jan 15;72(1):131–142. doi: 10.1016/0092-8674(93)90057-w. [DOI] [PubMed] [Google Scholar]
  12. Hamilton R. F., Iyer L. L., Holian A. Asbestos induces apoptosis in human alveolar macrophages. Am J Physiol. 1996 Nov;271(5 Pt 1):L813–L819. doi: 10.1152/ajplung.1996.271.5.L813. [DOI] [PubMed] [Google Scholar]
  13. Hupp T. R., Lane D. P., Ball K. L. Strategies for manipulating the p53 pathway in the treatment of human cancer. Biochem J. 2000 Nov 15;352(Pt 1):1–17. [PMC free article] [PubMed] [Google Scholar]
  14. Jaurand M. C. Mechanisms of fiber-induced genotoxicity. Environ Health Perspect. 1997 Sep;105 (Suppl 5):1073–1084. doi: 10.1289/ehp.97105s51073. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Jia L. Q., Osada M., Ishioka C., Gamo M., Ikawa S., Suzuki T., Shimodaira H., Niitani T., Kudo T., Akiyama M. Screening the p53 status of human cell lines using a yeast functional assay. Mol Carcinog. 1997 Aug;19(4):243–253. doi: 10.1002/(sici)1098-2744(199708)19:4<243::aid-mc5>3.0.co;2-d. [DOI] [PubMed] [Google Scholar]
  16. Johnson N. F., Carpenter T. R., Jaramillo R. J., Liberati T. A. DNA damage-inducible genes as biomarkers for exposures to environmental agents. Environ Health Perspect. 1997 Jun;105 (Suppl 4):913–918. doi: 10.1289/ehp.97105s4913. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Johnson N. F., Jaramillo R. J. p53, Cip1, and Gadd153 expression following treatment of A549 cells with natural and man-made vitreous fibers. Environ Health Perspect. 1997 Sep;105 (Suppl 5):1143–1145. doi: 10.1289/ehp.97105s51143. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kamp D. W., Graceffa P., Pryor W. A., Weitzman S. A. The role of free radicals in asbestos-induced diseases. Free Radic Biol Med. 1992;12(4):293–315. doi: 10.1016/0891-5849(92)90117-y. [DOI] [PubMed] [Google Scholar]
  19. Kamp D. W., Israbian V. A., Preusen S. E., Zhang C. X., Weitzman S. A. Asbestos causes DNA strand breaks in cultured pulmonary epithelial cells: role of iron-catalyzed free radicals. Am J Physiol. 1995 Mar;268(3 Pt 1):L471–L480. doi: 10.1152/ajplung.1995.268.3.L471. [DOI] [PubMed] [Google Scholar]
  20. Kamp D. W., Weitzman S. A. The molecular basis of asbestos induced lung injury. Thorax. 1999 Jul;54(7):638–652. doi: 10.1136/thx.54.7.638. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Kwon Yong-Won, Ueda Shugo, Ueno Masaya, Yodoi Junji, Masutani Hiroshi. Mechanism of p53-dependent apoptosis induced by 3-methylcholanthrene: involvement of p53 phosphorylation and p38 MAPK. J Biol Chem. 2001 Nov 12;277(3):1837–1844. doi: 10.1074/jbc.M105033200. [DOI] [PubMed] [Google Scholar]
  22. Lakin N. D., Jackson S. P. Regulation of p53 in response to DNA damage. Oncogene. 1999 Dec 13;18(53):7644–7655. doi: 10.1038/sj.onc.1203015. [DOI] [PubMed] [Google Scholar]
  23. Levine A. J. p53, the cellular gatekeeper for growth and division. Cell. 1997 Feb 7;88(3):323–331. doi: 10.1016/s0092-8674(00)81871-1. [DOI] [PubMed] [Google Scholar]
  24. Levresse V., Renier A., Fleury-Feith J., Levy F., Moritz S., Vivo C., Pilatte Y., Jaurand M. C. Analysis of cell cycle disruptions in cultures of rat pleural mesothelial cells exposed to asbestos fibers. Am J Respir Cell Mol Biol. 1997 Dec;17(6):660–671. doi: 10.1165/ajrcmb.17.6.2854. [DOI] [PubMed] [Google Scholar]
  25. Levresse V., Renier A., Levy F., Broaddus V. C., Jaurand M. DNA breakage in asbestos-treated normal and transformed (TSV40) rat pleural mesothelial cells. Mutagenesis. 2000 May;15(3):239–244. doi: 10.1093/mutage/15.3.239. [DOI] [PubMed] [Google Scholar]
  26. Manning Christopher B., Vallyathan Val, Mossman Brooke T. Diseases caused by asbestos: mechanisms of injury and disease development. Int Immunopharmacol. 2002 Feb;2(2-3):191–200. doi: 10.1016/s1567-5769(01)00172-2. [DOI] [PubMed] [Google Scholar]
  27. Matsuoka M., Igisu H. Cadmium induces phosphorylation of p53 at serine 15 in MCF-7 cells. Biochem Biophys Res Commun. 2001 Apr 20;282(5):1120–1125. doi: 10.1006/bbrc.2001.4700. [DOI] [PubMed] [Google Scholar]
  28. Meek D. W. New developments in the multi-site phosphorylation and integration of stress signalling at p53. Int J Radiat Biol. 1998 Dec;74(6):729–737. doi: 10.1080/095530098141005. [DOI] [PubMed] [Google Scholar]
  29. Mishra A., Liu J. Y., Brody A. R., Morris G. F. Inhaled asbestos fibers induce p53 expression in the rat lung. Am J Respir Cell Mol Biol. 1997 Apr;16(4):479–485. doi: 10.1165/ajrcmb.16.4.9115760. [DOI] [PubMed] [Google Scholar]
  30. Morozov V. E., Falzon M., Anderson C. W., Kuff E. L. DNA-dependent protein kinase is activated by nicks and larger single-stranded gaps. J Biol Chem. 1994 Jun 17;269(24):16684–16688. [PubMed] [Google Scholar]
  31. Mossman B. T., Bignon J., Corn M., Seaton A., Gee J. B. Asbestos: scientific developments and implications for public policy. Science. 1990 Jan 19;247(4940):294–301. doi: 10.1126/science.2153315. [DOI] [PubMed] [Google Scholar]
  32. Mossman B. T., Gee J. B. Asbestos-related diseases. N Engl J Med. 1989 Jun 29;320(26):1721–1730. doi: 10.1056/NEJM198906293202604. [DOI] [PubMed] [Google Scholar]
  33. Nelson A., Mendoza T., Hoyle G. W., Brody A. R., Fermin C., Morris G. F. Enhancement of fibrogenesis by the p53 tumor suppressor protein in asbestos-exposed rodents. Chest. 2001 Jul;120(1 Suppl):33S–34S. doi: 10.1378/chest.120.1_suppl.s33. [DOI] [PubMed] [Google Scholar]
  34. Nuorva K., Mäkitaro R., Huhti E., Kamel D., Vähäkangas K., Bloigu R., Soini Y., Päkkö P. p53 protein accumulation in lung carcinomas of patients exposed to asbestos and tobacco smoke. Am J Respir Crit Care Med. 1994 Aug;150(2):528–533. doi: 10.1164/ajrccm.150.2.8049841. [DOI] [PubMed] [Google Scholar]
  35. Okayasu R., Takahashi S., Yamada S., Hei T. K., Ullrich R. L. Asbestos and DNA double strand breaks. Cancer Res. 1999 Jan 15;59(2):298–300. [PubMed] [Google Scholar]
  36. Persons D. L., Yazlovitskaya E. M., Pelling J. C. Effect of extracellular signal-regulated kinase on p53 accumulation in response to cisplatin. J Biol Chem. 2000 Nov 17;275(46):35778–35785. doi: 10.1074/jbc.M004267200. [DOI] [PubMed] [Google Scholar]
  37. Quinlan T. R., Marsh J. P., Janssen Y. M., Borm P. A., Mossman B. T. Oxygen radicals and asbestos-mediated disease. Environ Health Perspect. 1994 Dec;102 (Suppl 10):107–110. doi: 10.1289/ehp.94102s10107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Robledo R. F., Buder-Hoffmann S. A., Cummins A. B., Walsh E. S., Taatjes D. J., Mossman B. T. Increased phosphorylated extracellular signal-regulated kinase immunoreactivity associated with proliferative and morphologic lung alterations after chrysotile asbestos inhalation in mice. Am J Pathol. 2000 Apr;156(4):1307–1316. doi: 10.1016/S0002-9440(10)65001-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Sarkaria J. N., Tibbetts R. S., Busby E. C., Kennedy A. P., Hill D. E., Abraham R. T. Inhibition of phosphoinositide 3-kinase related kinases by the radiosensitizing agent wortmannin. Cancer Res. 1998 Oct 1;58(19):4375–4382. [PubMed] [Google Scholar]
  40. Schaeffer H. J., Weber M. J. Mitogen-activated protein kinases: specific messages from ubiquitous messengers. Mol Cell Biol. 1999 Apr;19(4):2435–2444. doi: 10.1128/mcb.19.4.2435. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. She Q. B., Bode A. M., Ma W. Y., Chen N. Y., Dong Z. Resveratrol-induced activation of p53 and apoptosis is mediated by extracellular-signal-regulated protein kinases and p38 kinase. Cancer Res. 2001 Feb 15;61(4):1604–1610. [PubMed] [Google Scholar]
  42. She Q. B., Chen N., Dong Z. ERKs and p38 kinase phosphorylate p53 protein at serine 15 in response to UV radiation. J Biol Chem. 2000 Jul 7;275(27):20444–20449. doi: 10.1074/jbc.M001020200. [DOI] [PubMed] [Google Scholar]
  43. Shieh S. Y., Ikeda M., Taya Y., Prives C. DNA damage-induced phosphorylation of p53 alleviates inhibition by MDM2. Cell. 1997 Oct 31;91(3):325–334. doi: 10.1016/s0092-8674(00)80416-x. [DOI] [PubMed] [Google Scholar]
  44. Shih A., Lin H. Y., Davis F. B., Davis P. J. Thyroid hormone promotes serine phosphorylation of p53 by mitogen-activated protein kinase. Biochemistry. 2001 Mar 6;40(9):2870–2878. doi: 10.1021/bi001978b. [DOI] [PubMed] [Google Scholar]
  45. Siliciano J. D., Canman C. E., Taya Y., Sakaguchi K., Appella E., Kastan M. B. DNA damage induces phosphorylation of the amino terminus of p53. Genes Dev. 1997 Dec 15;11(24):3471–3481. doi: 10.1101/gad.11.24.3471. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Tanaka S., Choe N., Hemenway D. R., Zhu S., Matalon S., Kagan E. Asbestos inhalation induces reactive nitrogen species and nitrotyrosine formation in the lungs and pleura of the rat. J Clin Invest. 1998 Jul 15;102(2):445–454. doi: 10.1172/JCI3169. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Vousden K. H. p53: death star. Cell. 2000 Nov 22;103(5):691–694. doi: 10.1016/s0092-8674(00)00171-9. [DOI] [PubMed] [Google Scholar]
  48. Wang S., Shi X. Mechanisms of Cr(VI)-induced p53 activation: the role of phosphorylation, mdm2 and ERK. Carcinogenesis. 2001 May;22(5):757–762. doi: 10.1093/carcin/22.5.757. [DOI] [PubMed] [Google Scholar]
  49. Wu J., Liu W., Koenig K., Idell S., Broaddus V. C. Vitronectin adsorption to chrysotile asbestos increases fiber phagocytosis and toxicity for mesothelial cells. Am J Physiol Lung Cell Mol Physiol. 2000 Nov;279(5):L916–L923. doi: 10.1152/ajplung.2000.279.5.L916. [DOI] [PubMed] [Google Scholar]
  50. Zanella C. L., Posada J., Tritton T. R., Mossman B. T. Asbestos causes stimulation of the extracellular signal-regulated kinase 1 mitogen-activated protein kinase cascade after phosphorylation of the epidermal growth factor receptor. Cancer Res. 1996 Dec 1;56(23):5334–5338. [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES