Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 2003 Apr;111(4):536–544. doi: 10.1289/ehp.5828

Fetal chlorpyrifos exposure: adverse effects on brain cell development and cholinergic biomarkers emerge postnatally and continue into adolescence and adulthood.

Dan Qiao 1, Frederic J Seidler 1, Charlotte A Tate 1, Mandy M Cousins 1, Theodore A Slotkin 1
PMCID: PMC1241441  PMID: 12676612

Abstract

Fetal and childhood exposures to widely used organophosphate pesticides, especially chlorpyrifos (CPF), have raised concerns about developmental neurotoxicity. Previously, biomarkers for brain cell number, cell packing density, and cell size indicated that neonatal rats were more sensitive to CPF than were fetal rats, yet animals exposed prenatally still developed behavioral deficits in adolescence and adulthood. In the present study, we administered CPF to pregnant rats on gestational days 17-20, using regimens devoid of overt fetal toxicity. We then examined subsequent development of acetylcholine systems in forebrain regions involved in cognitive function and compared the effects with those on general biomarkers of cell development. Choline acetyltransferase, a constitutive marker for cholinergic nerve terminals, showed only minor CPF-induced changes during the period of rapid synaptogenesis. In contrast, hemicholinium-3 binding to the presynaptic choline transporter, which is responsive to nerve impulse activity, displayed marked suppression in the animals exposed to CPF; despite a return to nearly normal values by weaning, deficits were again apparent in adolescence and adulthood. There was no compensatory up-regulation of cholinergic receptors, as m2-muscarinic cholinergic receptor binding was unchanged. CPF also elicited delayed-onset alterations in biomarkers for general aspects of cell integrity, with reductions in cell packing density, increases in relative cell size, and contraction of neuritic extensions; however, neither the magnitude nor timing of these changes was predictive of the cholinergic defects. The present findings indicate a wide window of vulnerability of cholinergic systems to CPF, extending from prenatal through postnatal periods, occurring independently of adverse effects on general cellular neurotoxicity.

Full Text

The Full Text of this article is available as a PDF (165.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altman J., Bayer S. A. Migration and distribution of two populations of hippocampal granule cell precursors during the perinatal and postnatal periods. J Comp Neurol. 1990 Nov 15;301(3):365–381. doi: 10.1002/cne.903010304. [DOI] [PubMed] [Google Scholar]
  2. Aubert I., Cécyre D., Gauthier S., Quirion R. Comparative ontogenic profile of cholinergic markers, including nicotinic and muscarinic receptors, in the rat brain. J Comp Neurol. 1996 May 20;369(1):31–55. doi: 10.1002/(SICI)1096-9861(19960520)369:1<31::AID-CNE3>3.0.CO;2-L. [DOI] [PubMed] [Google Scholar]
  3. Barone S., Jr, Das K. P., Lassiter T. L., White L. D. Vulnerable processes of nervous system development: a review of markers and methods. Neurotoxicology. 2000 Feb-Apr;21(1-2):15–36. [PubMed] [Google Scholar]
  4. Bayer S. A. 3H-thymidine-radiographic studies of neurogenesis in the rat olfactory bulb. Exp Brain Res. 1983;50(2-3):329–340. doi: 10.1007/BF00239197. [DOI] [PubMed] [Google Scholar]
  5. Bayer S. A., Yackel J. W., Puri P. S. Neurons in the rat dentate gyrus granular layer substantially increase during juvenile and adult life. Science. 1982 May 21;216(4548):890–892. doi: 10.1126/science.7079742. [DOI] [PubMed] [Google Scholar]
  6. Bell J. M., Whitmore W. L., Queen K. L., Orband-Miller L., Slotkin T. A. Biochemical determinants of growth sparing during neonatal nutritional deprivation or enhancement: ornithine decarboxylase, polyamines, and macromolecules in brain regions and heart. Pediatr Res. 1987 Nov;22(5):599–604. doi: 10.1203/00006450-198711000-00024. [DOI] [PubMed] [Google Scholar]
  7. Berger-Sweeney J., Hohmann C. F. Behavioral consequences of abnormal cortical development: insights into developmental disabilities. Behav Brain Res. 1997 Jul;86(2):121–142. doi: 10.1016/s0166-4328(96)02251-6. [DOI] [PubMed] [Google Scholar]
  8. Bomser J. A., Casida J. E. Diethylphosphorylation of rat cardiac M2 muscarinic receptor by chlorpyrifos oxon in vitro. Toxicol Lett. 2001 Feb 3;119(1):21–26. doi: 10.1016/s0378-4274(00)00294-0. [DOI] [PubMed] [Google Scholar]
  9. Bushnell P. J., Pope C. N., Padilla S. Behavioral and neurochemical effects of acute chlorpyrifos in rats: tolerance to prolonged inhibition of cholinesterase. J Pharmacol Exp Ther. 1993 Aug;266(2):1007–1017. [PubMed] [Google Scholar]
  10. Campbell C. G., Seidler F. J., Slotkin T. A. Chlorpyrifos interferes with cell development in rat brain regions. Brain Res Bull. 1997;43(2):179–189. doi: 10.1016/s0361-9230(96)00436-4. [DOI] [PubMed] [Google Scholar]
  11. Chakraborti T. K., Farrar J. D., Pope C. N. Comparative neurochemical and neurobehavioral effects of repeated chlorpyrifos exposures in young and adult rats. Pharmacol Biochem Behav. 1993 Sep;46(1):219–224. doi: 10.1016/0091-3057(93)90344-s. [DOI] [PubMed] [Google Scholar]
  12. Dam K., Garcia S. J., Seidler F. J., Slotkin T. A. Neonatal chlorpyrifos exposure alters synaptic development and neuronal activity in cholinergic and catecholaminergic pathways. Brain Res Dev Brain Res. 1999 Aug 5;116(1):9–20. doi: 10.1016/s0165-3806(99)00067-x. [DOI] [PubMed] [Google Scholar]
  13. Dam K., Seidler F. J., Slotkin T. A. Developmental neurotoxicity of chlorpyrifos: delayed targeting of DNA synthesis after repeated administration. Brain Res Dev Brain Res. 1998 Jun 15;108(1-2):39–45. doi: 10.1016/s0165-3806(98)00028-5. [DOI] [PubMed] [Google Scholar]
  14. Das K. P., Barone S., Jr Neuronal differentiation in PC12 cells is inhibited by chlorpyrifos and its metabolites: is acetylcholinesterase inhibition the site of action? Toxicol Appl Pharmacol. 1999 Nov 1;160(3):217–230. doi: 10.1006/taap.1999.8767. [DOI] [PubMed] [Google Scholar]
  15. Frade J. M., Barde Y. A. Nerve growth factor: two receptors, multiple functions. Bioessays. 1998 Feb;20(2):137–145. doi: 10.1002/(SICI)1521-1878(199802)20:2<137::AID-BIES6>3.0.CO;2-Q. [DOI] [PubMed] [Google Scholar]
  16. Garcia S. J., Seidler F. J., Crumpton T. L., Slotkin T. A. Does the developmental neurotoxicity of chlorpyrifos involve glial targets? Macromolecule synthesis, adenylyl cyclase signaling, nuclear transcription factors, and formation of reactive oxygen in C6 glioma cells. Brain Res. 2001 Feb 9;891(1-2):54–68. doi: 10.1016/s0006-8993(00)03189-9. [DOI] [PubMed] [Google Scholar]
  17. Garcia Stephanie J., Seidler Frederic J., Qiao Dan, Slotkin Theodore A. Chlorpyrifos targets developing glia: effects on glial fibrillary acidic protein. Brain Res Dev Brain Res. 2002 Feb 28;133(2):151–161. doi: 10.1016/s0165-3806(02)00283-3. [DOI] [PubMed] [Google Scholar]
  18. Garcia Stephanie J., Seidler Frederic J., Slotkin Theodore A. Developmental neurotoxicity elicited by prenatal or postnatal chlorpyrifos exposure: effects on neurospecific proteins indicate changing vulnerabilities. Environ Health Perspect. 2003 Mar;111(3):297–303. doi: 10.1289/ehp.5791. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Happe H. K., Murrin L. C. High-affinity choline transport regulation by drug administration during postnatal development. J Neurochem. 1992 Jun;58(6):2053–2059. doi: 10.1111/j.1471-4159.1992.tb10946.x. [DOI] [PubMed] [Google Scholar]
  20. Hohmann C. F., Berger-Sweeney J. Cholinergic regulation of cortical development and plasticity. New twists to an old story. Perspect Dev Neurobiol. 1998;5(4):401–425. [PubMed] [Google Scholar]
  21. Hohmann C. F., Brooks A. R., Coyle J. T. Neonatal lesions of the basal forebrain cholinergic neurons result in abnormal cortical development. Brain Res. 1988 Aug 1;470(2):253–264. doi: 10.1016/0165-3806(88)90244-1. [DOI] [PubMed] [Google Scholar]
  22. Huff R. A., Corcoran J. J., Anderson J. K., Abou-Donia M. B. Chlorpyrifos oxon binds directly to muscarinic receptors and inhibits cAMP accumulation in rat striatum. J Pharmacol Exp Ther. 1994 Apr;269(1):329–335. [PubMed] [Google Scholar]
  23. Hunter D. L., Lassiter T. L., Padilla S. Gestational exposure to chlorpyrifos: comparative distribution of trichloropyridinol in the fetus and dam. Toxicol Appl Pharmacol. 1999 Jul 1;158(1):16–23. doi: 10.1006/taap.1999.8689. [DOI] [PubMed] [Google Scholar]
  24. Huttenlocher P. R. Morphometric study of human cerebral cortex development. Neuropsychologia. 1990;28(6):517–527. doi: 10.1016/0028-3932(90)90031-i. [DOI] [PubMed] [Google Scholar]
  25. Höhmann C. F., Wilson L., Coyle J. T. Efferent and afferent connections of mouse sensory-motor cortex following cholinergic deafferentation at birth. Cereb Cortex. 1991 Mar-Apr;1(2):158–172. doi: 10.1093/cercor/1.2.158. [DOI] [PubMed] [Google Scholar]
  26. Jope R. S. High affinity choline transport and acetylCoA production in brain and their roles in the regulation of acetylcholine synthesis. Brain Res. 1979 Dec;180(3):313–344. doi: 10.1016/0165-0173(79)90009-2. [DOI] [PubMed] [Google Scholar]
  27. Katz E. J., Cortes V. I., Eldefrawi M. E., Eldefrawi A. T. Chlorpyrifos, parathion, and their oxons bind to and desensitize a nicotinic acetylcholine receptor: relevance to their toxicities. Toxicol Appl Pharmacol. 1997 Oct;146(2):227–236. doi: 10.1006/taap.1997.8201. [DOI] [PubMed] [Google Scholar]
  28. Klemm N., Kuhar M. J. Post-mortem changes in high affinity choline uptake. J Neurochem. 1979 May;32(5):1487–1494. doi: 10.1111/j.1471-4159.1979.tb11089.x. [DOI] [PubMed] [Google Scholar]
  29. Labarca C., Paigen K. A simple, rapid, and sensitive DNA assay procedure. Anal Biochem. 1980 Mar 1;102(2):344–352. doi: 10.1016/0003-2697(80)90165-7. [DOI] [PubMed] [Google Scholar]
  30. Lassiter T. L., Padilla S., Mortensen S. R., Chanda S. M., Moser V. C., Barone S., Jr Gestational exposure to chlorpyrifos: apparent protection of the fetus? Toxicol Appl Pharmacol. 1998 Sep;152(1):56–65. doi: 10.1006/taap.1998.8514. [DOI] [PubMed] [Google Scholar]
  31. Lau C., Seidler F. J., Cameron A. M., Navarro H. A., Bell J. M., Bartolome J., Slotkin T. A. Nutritional influences on adrenal chromaffin cell development: comparison with central neurons. Pediatr Res. 1988 Nov;24(5):583–587. doi: 10.1203/00006450-198811000-00009. [DOI] [PubMed] [Google Scholar]
  32. Levin E. D., Addy N., Nakajima A., Christopher N. C., Seidler F. J., Slotkin T. A. Persistent behavioral consequences of neonatal chlorpyrifos exposure in rats. Brain Res Dev Brain Res. 2001 Sep 23;130(1):83–89. doi: 10.1016/s0165-3806(01)00215-2. [DOI] [PubMed] [Google Scholar]
  33. Levin Edward D., Addy Nii, Baruah Avanti, Elias Alana, Christopher N. Channelle, Seidler Frederic J., Slotkin Theodore A. Prenatal chlorpyrifos exposure in rats causes persistent behavioral alterations. Neurotoxicol Teratol. 2002 Nov-Dec;24(6):733–741. doi: 10.1016/s0892-0362(02)00272-6. [DOI] [PubMed] [Google Scholar]
  34. Liu J., Pope C. N. Effects of chlorpyrifos on high-affinity choline uptake and [3H]hemicholinium-3 binding in rat brain. Fundam Appl Toxicol. 1996 Nov;34(1):84–90. doi: 10.1006/faat.1996.0178. [DOI] [PubMed] [Google Scholar]
  35. Mattsson J. L., Maurissen J. P., Nolan R. J., Brzak K. A. Lack of differential sensitivity to cholinesterase inhibition in fetuses and neonates compared to dams treated perinatally with chlorpyrifos. Toxicol Sci. 2000 Feb;53(2):438–446. doi: 10.1093/toxsci/53.2.438. [DOI] [PubMed] [Google Scholar]
  36. McWilliams J. R., Lynch G. Rate of synaptic replacement in denervated rat hippocampus declines precipitously from the juvenile period to adulthood. Science. 1983 Aug 5;221(4610):572–574. doi: 10.1126/science.6867730. [DOI] [PubMed] [Google Scholar]
  37. Mileson B. E., Chambers J. E., Chen W. L., Dettbarn W., Ehrich M., Eldefrawi A. T., Gaylor D. W., Hamernik K., Hodgson E., Karczmar A. G. Common mechanism of toxicity: a case study of organophosphorus pesticides. Toxicol Sci. 1998 Jan;41(1):8–20. doi: 10.1006/toxs.1997.2431. [DOI] [PubMed] [Google Scholar]
  38. Monnet-Tschudi F., Zurich M. G., Schilter B., Costa L. G., Honegger P. Maturation-dependent effects of chlorpyrifos and parathion and their oxygen analogs on acetylcholinesterase and neuronal and glial markers in aggregating brain cell cultures. Toxicol Appl Pharmacol. 2000 Jun 15;165(3):175–183. doi: 10.1006/taap.2000.8934. [DOI] [PubMed] [Google Scholar]
  39. Morley B. J., Happe H. K. Cholinergic receptors: dual roles in transduction and plasticity. Hear Res. 2000 Sep;147(1-2):104–112. doi: 10.1016/s0378-5955(00)00124-6. [DOI] [PubMed] [Google Scholar]
  40. Moser V. C., Padilla S. Age- and gender-related differences in the time course of behavioral and biochemical effects produced by oral chlorpyrifos in rats. Toxicol Appl Pharmacol. 1998 Mar;149(1):107–119. doi: 10.1006/taap.1997.8354. [DOI] [PubMed] [Google Scholar]
  41. Murrin L. C. High-affinity transport of choline in neuronal tissue. Pharmacology. 1980;21(2):132–140. doi: 10.1159/000137425. [DOI] [PubMed] [Google Scholar]
  42. Navarro H. A., Seidler F. J., Eylers J. P., Baker F. E., Dobbins S. S., Lappi S. E., Slotkin T. A. Effects of prenatal nicotine exposure on development of central and peripheral cholinergic neurotransmitter systems. Evidence for cholinergic trophic influences in developing brain. J Pharmacol Exp Ther. 1989 Dec;251(3):894–900. [PubMed] [Google Scholar]
  43. Pope C. N. Organophosphorus pesticides: do they all have the same mechanism of toxicity? J Toxicol Environ Health B Crit Rev. 1999 Apr-Jun;2(2):161–181. doi: 10.1080/109374099281205. [DOI] [PubMed] [Google Scholar]
  44. Qiao D., Seidler F. J., Slotkin T. A. Developmental neurotoxicity of chlorpyrifos modeled in vitro: comparative effects of metabolites and other cholinesterase inhibitors on DNA synthesis in PC12 and C6 cells. Environ Health Perspect. 2001 Sep;109(9):909–913. doi: 10.1289/ehp.01109909. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Qiao Dan, Seidler Frederic J., Padilla Stephanie, Slotkin Theodore A. Developmental neurotoxicity of chlorpyrifos: what is the vulnerable period? Environ Health Perspect. 2002 Nov;110(11):1097–1103. doi: 10.1289/ehp.021101097. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Rice D., Barone S., Jr Critical periods of vulnerability for the developing nervous system: evidence from humans and animal models. Environ Health Perspect. 2000 Jun;108 (Suppl 3):511–533. doi: 10.1289/ehp.00108s3511. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Scheetz A. J., Constantine-Paton M. Modulation of NMDA receptor function: implications for vertebrate neural development. FASEB J. 1994 Jul;8(10):745–752. doi: 10.1096/fasebj.8.10.8050674. [DOI] [PubMed] [Google Scholar]
  48. Schwartz L. M. The role of cell death genes during development. Bioessays. 1991 Aug;13(8):389–395. doi: 10.1002/bies.950130805. [DOI] [PubMed] [Google Scholar]
  49. Shelton D. L., Nadler J. V., Cotman C. W. Development of high affinity choline uptake and associated acetylcholine synthesis in the rat fascia dentata. Brain Res. 1979 Mar 16;163(2):263–275. doi: 10.1016/0006-8993(79)90354-8. [DOI] [PubMed] [Google Scholar]
  50. Simon J. R., Atweh S., Kuhar M. J. Sodium-dependent high affinity choline uptake: a regulatory step in the synthesis of acetylcholine. J Neurochem. 1976 May;26(5):909–922. doi: 10.1111/j.1471-4159.1976.tb06472.x. [DOI] [PubMed] [Google Scholar]
  51. Slotkin T. A., Cousins M. M., Tate C. A., Seidler F. J. Persistent cholinergic presynaptic deficits after neonatal chlorpyrifos exposure. Brain Res. 2001 Jun 1;902(2):229–243. doi: 10.1016/s0006-8993(01)02387-3. [DOI] [PubMed] [Google Scholar]
  52. Slotkin T. A. Developmental cholinotoxicants: nicotine and chlorpyrifos. Environ Health Perspect. 1999 Feb;107 (Suppl 1):71–80. doi: 10.1289/ehp.99107s171. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Slotkin T. A., Persons D., Slepetis R. J., Taylor D., Bartolome J. Control of nucleic acid and protein synthesis in developing brain, kidney, and heart of the neonatal rat: effects of alpha-difluoromethylornithine, a specific, irreversible inhibitor of ornithine decarboxylase. Teratology. 1984 Oct;30(2):211–224. doi: 10.1002/tera.1420300209. [DOI] [PubMed] [Google Scholar]
  54. Slotkin T. A., Seidler F. J., Crain B. J., Bell J. M., Bissette G., Nemeroff C. B. Regulatory changes in presynaptic cholinergic function assessed in rapid autopsy material from patients with Alzheimer disease: implications for etiology and therapy. Proc Natl Acad Sci U S A. 1990 Apr;87(7):2452–2455. doi: 10.1073/pnas.87.7.2452. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Slotkin T. A., Tate C. A., Cousins M. M., Seidler F. J. Functional alterations in CNS catecholamine systems in adolescence and adulthood after neonatal chlorpyrifos exposure. Brain Res Dev Brain Res. 2002 Feb 28;133(2):163–173. doi: 10.1016/s0165-3806(02)00284-5. [DOI] [PubMed] [Google Scholar]
  56. Smith P. K., Krohn R. I., Hermanson G. T., Mallia A. K., Gartner F. H., Provenzano M. D., Fujimoto E. K., Goeke N. M., Olson B. J., Klenk D. C. Measurement of protein using bicinchoninic acid. Anal Biochem. 1985 Oct;150(1):76–85. doi: 10.1016/0003-2697(85)90442-7. [DOI] [PubMed] [Google Scholar]
  57. Song X., Violin J. D., Seidler F. J., Slotkin T. A. Modeling the developmental neurotoxicity of chlorpyrifos in vitro: macromolecule synthesis in PC12 cells. Toxicol Appl Pharmacol. 1998 Jul;151(1):182–191. doi: 10.1006/taap.1998.8424. [DOI] [PubMed] [Google Scholar]
  58. Thai L., Galluzzo J. M., McCook E. C., Seidler F. J., Slotkin T. A. Atypical regulation of hepatic adenylyl cyclase and adrenergic receptors during a critical developmental period: agonists evoke supersensitivity accompanied by failure of receptor down-regulation. Pediatr Res. 1996 Apr;39(4 Pt 1):697–707. doi: 10.1203/00006450-199604000-00023. [DOI] [PubMed] [Google Scholar]
  59. Trauth J. A., Seidler F. J., Slotkin T. A. An animal model of adolescent nicotine exposure: effects on gene expression and macromolecular constituents in rat brain regions. Brain Res. 2000 Jun 9;867(1-2):29–39. doi: 10.1016/s0006-8993(00)02208-3. [DOI] [PubMed] [Google Scholar]
  60. Vickroy T. W., Roeske W. R., Yamamura H. I. Sodium-dependent high-affinity binding of [3H]hemicholinium-3 in the rat brain: a potentially selective marker for presynaptic cholinergic sites. Life Sci. 1984 Dec 3;35(23):2335–2343. doi: 10.1016/0024-3205(84)90525-3. [DOI] [PubMed] [Google Scholar]
  61. Ward T. R., Mundy W. R. Organophosphorus compounds preferentially affect second messenger systems coupled to M2/M4 receptors in rat frontal cortex. Brain Res Bull. 1996;39(1):49–55. doi: 10.1016/0361-9230(95)02044-6. [DOI] [PubMed] [Google Scholar]
  62. Whitney K. D., Seidler F. J., Slotkin T. A. Developmental neurotoxicity of chlorpyrifos: cellular mechanisms. Toxicol Appl Pharmacol. 1995 Sep;134(1):53–62. doi: 10.1006/taap.1995.1168. [DOI] [PubMed] [Google Scholar]
  63. Winick M., Noble A. Quantitative changes in DNA, RNA, and protein during prenatal and postnatal growth in the rat. Dev Biol. 1965 Dec;12(3):451–466. doi: 10.1016/0012-1606(65)90009-6. [DOI] [PubMed] [Google Scholar]
  64. Zahalka E. A., Seidler F. J., Lappi S. E., McCook E. C., Yanai J., Slotkin T. A. Deficits in development of central cholinergic pathways caused by fetal nicotine exposure: differential effects on choline acetyltransferase activity and [3H]hemicholinium-3 binding. Neurotoxicol Teratol. 1992 Nov-Dec;14(6):375–382. doi: 10.1016/0892-0362(92)90047-e. [DOI] [PubMed] [Google Scholar]
  65. Zahalka E. A., Seidler F. J., Lappi S. E., Yanai J., Slotkin T. A. Differential development of cholinergic nerve terminal markers in rat brain regions: implications for nerve terminal density, impulse activity and specific gene expression. Brain Res. 1993 Jan 22;601(1-2):221–229. doi: 10.1016/0006-8993(93)91714-4. [DOI] [PubMed] [Google Scholar]
  66. Zahalka E. A., Seidler F. J., Yanai J., Slotkin T. A. Fetal nicotine exposure alters ontogeny of M1-receptors and their link to G-proteins. Neurotoxicol Teratol. 1993 Mar-Apr;15(2):107–115. doi: 10.1016/0892-0362(93)90069-z. [DOI] [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES