Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 2003 Apr;111(4):545–552. doi: 10.1289/ehp.5671

Interaction of organophosphate pesticides and related compounds with the androgen receptor.

Hiroto Tamura 1, Hiromichi Yoshikawa 1, Kevin W Gaido 1, Susan M Ross 1, Robert K DeLisle 1, William J Welsh 1, Ann M Richard 1
PMCID: PMC1241442  PMID: 12676613

Abstract

Identification of several environmental chemicals capable of binding to the androgen receptor (AR) and interfering with its normal function has heightened concern about adverse effects across a broad spectrum of environmental chemicals. We previously demonstrated AR antagonist activity of the organophosphate (OP) pesticide fenitrothion. In this study, we characterized AR activity of analogues of fenitrothion to probe the structural requirements for AR activity among related chemicals. AR activity was measured using HepG2 human hepatoma cells transfected with human AR plus an androgen-responsive luciferase reporter gene, MMTV-luc. AR antagonist activity decreased as alkyl chain length of the phosphoester increased, whereas electron-donating properties of phenyl substituents of the tested compounds did not influence AR activity. Oxon derivatives of fenitrothion, which are more likely to undergo hydrolytic degradation, had no detectable AR antagonist activity. Molecular modeling results suggest that hydrogen-bond energies and the maximum achievable interatomic distance between two terminal H-bond capable sites may influence both the potential to interact with the AR and the nature of the interaction (agonist vs. antagonist) within this series of chemicals. This hypothesis is supported by the results of recent AR homology modeling and crystallographic studies relative to agonist- and antagonist-bound AR complexes. The present results are placed in the context of structure-activity knowledge derived from previous modeling studies as well as studies aimed toward designing nonsteroidal antiandrogen pharmaceuticals. Present results extend understanding of the structural requirements for AR activity to a new class of nonsteroidal, environmental, OP-related chemicals.

Full Text

The Full Text of this article is available as a PDF (350.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anstead G. M., Carlson K. E., Katzenellenbogen J. A. The estradiol pharmacophore: ligand structure-estrogen receptor binding affinity relationships and a model for the receptor binding site. Steroids. 1997 Mar;62(3):268–303. doi: 10.1016/s0039-128x(96)00242-5. [DOI] [PubMed] [Google Scholar]
  2. Brzozowski A. M., Pike A. C., Dauter Z., Hubbard R. E., Bonn T., Engström O., Ohman L., Greene G. L., Gustafsson J. A., Carlquist M. Molecular basis of agonism and antagonism in the oestrogen receptor. Nature. 1997 Oct 16;389(6652):753–758. doi: 10.1038/39645. [DOI] [PubMed] [Google Scholar]
  3. Buchanan G., Yang M., Harris J. M., Nahm H. S., Han G., Moore N., Bentel J. M., Matusik R. J., Horsfall D. J., Marshall V. R. Mutations at the boundary of the hinge and ligand binding domain of the androgen receptor confer increased transactivation function. Mol Endocrinol. 2001 Jan;15(1):46–56. doi: 10.1210/mend.15.1.0581. [DOI] [PubMed] [Google Scholar]
  4. Doesburg P., Kuil C. W., Berrevoets C. A., Steketee K., Faber P. W., Mulder E., Brinkmann A. O., Trapman J. Functional in vivo interaction between the amino-terminal, transactivation domain and the ligand binding domain of the androgen receptor. Biochemistry. 1997 Feb 4;36(5):1052–1064. doi: 10.1021/bi961775g. [DOI] [PubMed] [Google Scholar]
  5. Fang H., Tong W., Shi L. M., Blair R., Perkins R., Branham W., Hass B. S., Xie Q., Dial S. L., Moland C. L. Structure-activity relationships for a large diverse set of natural, synthetic, and environmental estrogens. Chem Res Toxicol. 2001 Mar;14(3):280–294. doi: 10.1021/tx000208y. [DOI] [PubMed] [Google Scholar]
  6. Goldstein R. A., Katzenellenbogen J. A., Luthey-Schulten Z. A., Seielstad D. A., Wolynes P. G. Three-dimensional model for the hormone binding domains of steroid receptors. Proc Natl Acad Sci U S A. 1993 Nov 1;90(21):9949–9953. doi: 10.1073/pnas.90.21.9949. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gottlieb B., Lehvaslaiho H., Beitel L. K., Lumbroso R., Pinsky L., Trifiro M. The Androgen Receptor Gene Mutations Database. Nucleic Acids Res. 1998 Jan 1;26(1):234–238. doi: 10.1093/nar/26.1.234. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gray L. E., Jr, Ostby J., Cooper R. L., Kelce W. R. The estrogenic and antiandrogenic pesticide methoxychlor alters the reproductive tract and behavior without affecting pituitary size or LH and prolactin secretion in male rats. Toxicol Ind Health. 1999 Jan-Mar;15(1-2):37–47. doi: 10.1177/074823379901500105. [DOI] [PubMed] [Google Scholar]
  9. Gray L. E., Jr, Ostby J., Monosson E., Kelce W. R. Environmental antiandrogens: low doses of the fungicide vinclozolin alter sexual differentiation of the male rat. Toxicol Ind Health. 1999 Jan-Mar;15(1-2):48–64. doi: 10.1177/074823379901500106. [DOI] [PubMed] [Google Scholar]
  10. Kelce W. R., Monosson E., Gamcsik M. P., Laws S. C., Gray L. E., Jr Environmental hormone disruptors: evidence that vinclozolin developmental toxicity is mediated by antiandrogenic metabolites. Toxicol Appl Pharmacol. 1994 Jun;126(2):276–285. doi: 10.1006/taap.1994.1117. [DOI] [PubMed] [Google Scholar]
  11. Kelce W. R., Stone C. R., Laws S. C., Gray L. E., Kemppainen J. A., Wilson E. M. Persistent DDT metabolite p,p'-DDE is a potent androgen receptor antagonist. Nature. 1995 Jun 15;375(6532):581–585. doi: 10.1038/375581a0. [DOI] [PubMed] [Google Scholar]
  12. Loughney D. A., Schwender C. F. A comparison of progestin and androgen receptor binding using the CoMFA technique. J Comput Aided Mol Des. 1992 Dec;6(6):569–581. doi: 10.1007/BF00126215. [DOI] [PubMed] [Google Scholar]
  13. Maness S. C., McDonnell D. P., Gaido K. W. Inhibition of androgen receptor-dependent transcriptional activity by DDT isomers and methoxychlor in HepG2 human hepatoma cells. Toxicol Appl Pharmacol. 1998 Jul;151(1):135–142. doi: 10.1006/taap.1998.8431. [DOI] [PubMed] [Google Scholar]
  14. Marhefka C. A., Moore B. M., 2nd, Bishop T. C., Kirkovsky L., Mukherjee A., Dalton J. T., Miller D. D. Homology modeling using multiple molecular dynamics simulations and docking studies of the human androgen receptor ligand binding domain bound to testosterone and nonsteroidal ligands. J Med Chem. 2001 May 24;44(11):1729–1740. doi: 10.1021/jm0005353. [DOI] [PubMed] [Google Scholar]
  15. Matias P. M., Donner P., Coelho R., Thomaz M., Peixoto C., Macedo S., Otto N., Joschko S., Scholz P., Wegg A. Structural evidence for ligand specificity in the binding domain of the human androgen receptor. Implications for pathogenic gene mutations. J Biol Chem. 2000 Aug 25;275(34):26164–26171. doi: 10.1074/jbc.M004571200. [DOI] [PubMed] [Google Scholar]
  16. Matias Pedro M., Carrondo Maria Arménia, Coelho Ricardo, Thomaz Monica, Zhao Xiao-Yan, Wegg Anja, Crusius Kerstin, Egner Ursula, Donner Peter. Structural basis for the glucocorticoid response in a mutant human androgen receptor (AR(ccr)) derived from an androgen-independent prostate cancer. J Med Chem. 2002 Mar 28;45(7):1439–1446. doi: 10.1021/jm011072j. [DOI] [PubMed] [Google Scholar]
  17. McIntyre B. S., Barlow N. J., Wallace D. G., Maness S. C., Gaido K. W., Foster P. M. Effects of in utero exposure to linuron on androgen-dependent reproductive development in the male Crl:CD(SD)BR rat. Toxicol Appl Pharmacol. 2000 Sep 1;167(2):87–99. doi: 10.1006/taap.2000.8998. [DOI] [PubMed] [Google Scholar]
  18. McKinney J. D., Waller C. L. Polychlorinated biphenyls as hormonally active structural analogues. Environ Health Perspect. 1994 Mar;102(3):290–297. doi: 10.1289/ehp.94102290. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Monosson E., Kelce W. R., Lambright C., Ostby J., Gray L. E., Jr Peripubertal exposure to the antiandrogenic fungicide, vinclozolin, delays puberty, inhibits the development of androgen-dependent tissues, and alters androgen receptor function in the male rat. Toxicol Ind Health. 1999 Jan-Mar;15(1-2):65–79. doi: 10.1177/074823379901500107. [DOI] [PubMed] [Google Scholar]
  20. Ostby J., Kelce W. R., Lambright C., Wolf C. J., Mann P., Gray L. E., Jr The fungicide procymidone alters sexual differentiation in the male rat by acting as an androgen-receptor antagonist in vivo and in vitro. Toxicol Ind Health. 1999 Jan-Mar;15(1-2):80–93. doi: 10.1177/074823379901500108. [DOI] [PubMed] [Google Scholar]
  21. Pike A. C., Brzozowski A. M., Hubbard R. E., Bonn T., Thorsell A. G., Engström O., Ljunggren J., Gustafsson J. A., Carlquist M. Structure of the ligand-binding domain of oestrogen receptor beta in the presence of a partial agonist and a full antagonist. EMBO J. 1999 Sep 1;18(17):4608–4618. doi: 10.1093/emboj/18.17.4608. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Poujol N., Wurtz J. M., Tahiri B., Lumbroso S., Nicolas J. C., Moras D., Sultan C. Specific recognition of androgens by their nuclear receptor. A structure-function study. J Biol Chem. 2000 Aug 4;275(31):24022–24031. doi: 10.1074/jbc.M001999200. [DOI] [PubMed] [Google Scholar]
  23. Renaud J. P., Rochel N., Ruff M., Vivat V., Chambon P., Gronemeyer H., Moras D. Crystal structure of the RAR-gamma ligand-binding domain bound to all-trans retinoic acid. Nature. 1995 Dec 14;378(6558):681–689. doi: 10.1038/378681a0. [DOI] [PubMed] [Google Scholar]
  24. Sack J. S., Kish K. F., Wang C., Attar R. M., Kiefer S. E., An Y., Wu G. Y., Scheffler J. E., Salvati M. E., Krystek S. R., Jr Crystallographic structures of the ligand-binding domains of the androgen receptor and its T877A mutant complexed with the natural agonist dihydrotestosterone. Proc Natl Acad Sci U S A. 2001 Apr 24;98(9):4904–4909. doi: 10.1073/pnas.081565498. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Safe S. H., Zacharewski T. Organochlorine exposure and risk for breast cancer. Prog Clin Biol Res. 1997;396:133–145. [PubMed] [Google Scholar]
  26. Singh S. M., Gauthier S., Labrie F. Androgen receptor antagonists (antiandrogens): structure-activity relationships. Curr Med Chem. 2000 Feb;7(2):211–247. doi: 10.2174/0929867003375371. [DOI] [PubMed] [Google Scholar]
  27. Sultan C., Lumbroso S., Poujol N., Belon C., Boudon C., Lobaccaro J. M. Mutations of androgen receptor gene in androgen insensitivity syndromes. J Steroid Biochem Mol Biol. 1993 Nov;46(5):519–530. doi: 10.1016/0960-0760(93)90178-y. [DOI] [PubMed] [Google Scholar]
  28. Tamura H., Maness S. C., Reischmann K., Dorman D. C., Gray L. E., Gaido K. W. Androgen receptor antagonism by the organophosphate insecticide fenitrothion. Toxicol Sci. 2001 Mar;60(1):56–62. doi: 10.1093/toxsci/60.1.56. [DOI] [PubMed] [Google Scholar]
  29. Tanenbaum D. M., Wang Y., Williams S. P., Sigler P. B. Crystallographic comparison of the estrogen and progesterone receptor's ligand binding domains. Proc Natl Acad Sci U S A. 1998 May 26;95(11):5998–6003. doi: 10.1073/pnas.95.11.5998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Taplin M. E., Bubley G. J., Ko Y. J., Small E. J., Upton M., Rajeshkumar B., Balk S. P. Selection for androgen receptor mutations in prostate cancers treated with androgen antagonist. Cancer Res. 1999 Jun 1;59(11):2511–2515. [PubMed] [Google Scholar]
  31. Teutsch G., Goubet F., Battmann T., Bonfils A., Bouchoux F., Cerede E., Gofflo D., Gaillard-Kelly M., Philibert D. Non-steroidal antiandrogens: synthesis and biological profile of high-affinity ligands for the androgen receptor. J Steroid Biochem Mol Biol. 1994 Jan;48(1):111–119. doi: 10.1016/0960-0760(94)90257-7. [DOI] [PubMed] [Google Scholar]
  32. Tong W., Lowis D. R., Perkins R., Chen Y., Welsh W. J., Goddette D. W., Heritage T. W., Sheehan D. M. Evaluation of quantitative structure-activity relationship methods for large-scale prediction of chemicals binding to the estrogen receptor. J Chem Inf Comput Sci. 1998 Jul-Aug;38(4):669–677. doi: 10.1021/ci980008g. [DOI] [PubMed] [Google Scholar]
  33. Tong W., Perkins R., Strelitz R., Collantes E. R., Keenan S., Welsh W. J., Branham W. S., Sheehan D. M. Quantitative structure-activity relationships (QSARs) for estrogen binding to the estrogen receptor: predictions across species. Environ Health Perspect. 1997 Oct;105(10):1116–1124. doi: 10.1289/ehp.971051116. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Tong W., Perkins R., Xing L., Welsh W. J., Sheehan D. M. QSAR models for binding of estrogenic compounds to estrogen receptor alpha and beta subtypes. Endocrinology. 1997 Sep;138(9):4022–4025. doi: 10.1210/endo.138.9.5487. [DOI] [PubMed] [Google Scholar]
  35. Tucker H., Crook J. W., Chesterson G. J. Nonsteroidal antiandrogens. Synthesis and structure-activity relationships of 3-substituted derivatives of 2-hydroxypropionanilides. J Med Chem. 1988 May;31(5):954–959. doi: 10.1021/jm00400a011. [DOI] [PubMed] [Google Scholar]
  36. Veldscholte J., Ris-Stalpers C., Kuiper G. G., Jenster G., Berrevoets C., Claassen E., van Rooij H. C., Trapman J., Brinkmann A. O., Mulder E. A mutation in the ligand binding domain of the androgen receptor of human LNCaP cells affects steroid binding characteristics and response to anti-androgens. Biochem Biophys Res Commun. 1990 Dec 14;173(2):534–540. doi: 10.1016/s0006-291x(05)80067-1. [DOI] [PubMed] [Google Scholar]
  37. Waller C. L., Juma B. W., Gray L. E., Jr, Kelce W. R. Three-dimensional quantitative structure--activity relationships for androgen receptor ligands. Toxicol Appl Pharmacol. 1996 Apr;137(2):219–227. doi: 10.1006/taap.1996.0075. [DOI] [PubMed] [Google Scholar]
  38. Waller C. L., Oprea T. I., Chae K., Park H. K., Korach K. S., Laws S. C., Wiese T. E., Kelce W. R., Gray L. E., Jr Ligand-based identification of environmental estrogens. Chem Res Toxicol. 1996 Dec;9(8):1240–1248. doi: 10.1021/tx960054f. [DOI] [PubMed] [Google Scholar]
  39. Wiese T. E., Brooks S. C. Molecular modeling of steroidal estrogens: novel conformations and their role in biological activity. J Steroid Biochem Mol Biol. 1994 Jul;50(1-2):61–73. doi: 10.1016/0960-0760(94)90173-2. [DOI] [PubMed] [Google Scholar]
  40. Wolf C., Jr, Lambright C., Mann P., Price M., Cooper R. L., Ostby J., Gray L. E., Jr Administration of potentially antiandrogenic pesticides (procymidone, linuron, iprodione, chlozolinate, p,p'-DDE, and ketoconazole) and toxic substances (dibutyl- and diethylhexyl phthalate, PCB 169, and ethane dimethane sulphonate) during sexual differentiation produces diverse profiles of reproductive malformations in the male rat. Toxicol Ind Health. 1999 Jan-Mar;15(1-2):94–118. doi: 10.1177/074823379901500109. [DOI] [PubMed] [Google Scholar]
  41. Wolff M. S., Toniolo P. G. Environmental organochlorine exposure as a potential etiologic factor in breast cancer. Environ Health Perspect. 1995 Oct;103 (Suppl 7):141–145. doi: 10.1289/ehp.95103s7141. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Wong C., Kelce W. R., Sar M., Wilson E. M. Androgen receptor antagonist versus agonist activities of the fungicide vinclozolin relative to hydroxyflutamide. J Biol Chem. 1995 Aug 25;270(34):19998–20003. doi: 10.1074/jbc.270.34.19998. [DOI] [PubMed] [Google Scholar]
  43. Wurtz J. M., Bourguet W., Renaud J. P., Vivat V., Chambon P., Moras D., Gronemeyer H. A canonical structure for the ligand-binding domain of nuclear receptors. Nat Struct Biol. 1996 Feb;3(2):206–206. doi: 10.1038/nsb0296-206. [DOI] [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES