Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 2003 May;111(5):737–741. doi: 10.1289/ehp.6008

Blood lead levels and sexual maturation in U.S. girls: the Third National Health and Nutrition Examination Survey, 1988-1994.

Tiejian Wu 1, Germaine M Buck 1, Pauline Mendola 1
PMCID: PMC1241484  PMID: 12727603

Abstract

Using data from the Third National Health and Nutrition Examination Survey, we assessed measures of puberty in U.S. girls in relation to blood lead levels to determine whether sexual maturation may be affected by current environmental lead exposure. The study sample included 1,706 girls 8-16 years old with pubic hair and breast development information; 1,235 girls 10-16 years old supplied information on menarche. Blood lead concentrations (range = 0.7-21.7 micro g/dL) were categorized into three levels: 0.7-2.0, 2.1-4.9, and 5.0-21.7 micro g/dL. Sexual maturation markers included self-reported attainment of menarche and physician determined Tanner stage 2 pubic hair and breast development. Girls who had not reached menarche or stage 2 pubic hair had higher blood lead levels than did girls who had. For example, among girls in the three levels of blood lead described above, the unweighted percentages of 10-year-olds who had attained Tanner stage 2 pubic hair were 60.0, 51.2, and 44.4%, respectively, and for girls 12 years old who reported reaching menarche, the values were 68.0, 44.3, and 38.5%, respectively. The negative relation of blood lead levels with attainment of menarche or stage 2 pubic hair remained significant in logistic regression even after adjustment for race/ethnicity, age, family size, residence in metropolitan area, poverty income ratio, and body mass index. In conclusion, higher blood lead levels were significantly associated with delayed attainment of menarche and pubic hair among U.S. girls, but not with breast development.

Full Text

The Full Text of this article is available as a PDF (173.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bellinger D. Teratogen update: lead. Teratology. 1994 Nov;50(5):367–373. doi: 10.1002/tera.1420500508. [DOI] [PubMed] [Google Scholar]
  2. Bray G. A. Obesity and reproduction. Hum Reprod. 1997 Oct;12 (Suppl 1):26–32. doi: 10.1093/humrep/12.suppl_1.26. [DOI] [PubMed] [Google Scholar]
  3. Bérubé S., Marcoux S., Maheux R. Characteristics related to the prevalence of minimal or mild endometriosis in infertile women. Canadian Collaborative Group on Endometriosis. Epidemiology. 1998 Sep;9(5):504–510. doi: 10.1097/00001648-199809000-00006. [DOI] [PubMed] [Google Scholar]
  4. Der R., Fahim Z., Hilderbrand D., Fahim M. Combined effect of lead and low protein diet on growth, sexual development, and metabolism in female rats. Res Commun Chem Pathol Pharmacol. 1974 Dec;9(4):723–738. [PubMed] [Google Scholar]
  5. Fredriks A. M., van Buuren S., Burgmeijer R. J., Meulmeester J. F., Beuker R. J., Brugman E., Roede M. J., Verloove-Vanhorick S. P., Wit J. M. Continuing positive secular growth change in The Netherlands 1955-1997. Pediatr Res. 2000 Mar;47(3):316–323. doi: 10.1203/00006450-200003000-00006. [DOI] [PubMed] [Google Scholar]
  6. Garland M., Hunter D. J., Colditz G. A., Manson J. E., Stampfer M. J., Spiegelman D., Speizer F., Willett W. C. Menstrual cycle characteristics and history of ovulatory infertility in relation to breast cancer risk in a large cohort of US women. Am J Epidemiol. 1998 Apr 1;147(7):636–643. doi: 10.1093/oxfordjournals.aje.a009504. [DOI] [PubMed] [Google Scholar]
  7. Herman-Giddens M. E., Slora E. J., Wasserman R. C., Bourdony C. J., Bhapkar M. V., Koch G. G., Hasemeier C. M. Secondary sexual characteristics and menses in young girls seen in office practice: a study from the Pediatric Research in Office Settings network. Pediatrics. 1997 Apr;99(4):505–512. doi: 10.1542/peds.99.4.505. [DOI] [PubMed] [Google Scholar]
  8. Karpati Adam M., Rubin Carol H., Kieszak Stephanie M., Marcus Michele, Troiano Richard P. Stature and pubertal stage assessment in American boys: the 1988-1994 Third National Health and Nutrition Examination Survey. J Adolesc Health. 2002 Mar;30(3):205–212. doi: 10.1016/s1054-139x(01)00320-2. [DOI] [PubMed] [Google Scholar]
  9. Kimmel C. A., Grant L. D., Sloan C. S., Gladen B. C. Chronic low-level lead toxicity in the rat. I. Maternal toxicity and perinatal effects. Toxicol Appl Pharmacol. 1980 Oct;56(1):28–41. doi: 10.1016/0041-008x(80)90129-5. [DOI] [PubMed] [Google Scholar]
  10. Komura H., Miyake A., Chen C. F., Tanizawa O., Yoshikawa H. Relationship of age at menarche and subsequent fertility. Eur J Obstet Gynecol Reprod Biol. 1992 May 13;44(3):201–203. doi: 10.1016/0028-2243(92)90099-k. [DOI] [PubMed] [Google Scholar]
  11. Landrigan P. J. Pediatric lead poisoning: is there a threshold? Public Health Rep. 2000 Nov-Dec;115(6):530–531. doi: 10.1093/phr/115.6.530. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Lanphear B. P., Dietrich K., Auinger P., Cox C. Cognitive deficits associated with blood lead concentrations <10 microg/dL in US children and adolescents. Public Health Rep. 2000 Nov-Dec;115(6):521–529. doi: 10.1093/phr/115.6.521. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Lanphear B. P., Weitzman M., Eberly S. Racial differences in Urban children's environmental exposures to lead. Am J Public Health. 1996 Oct;86(10):1460–1463. doi: 10.2105/ajph.86.10.1460. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. McGregor A. J., Mason H. J. Chronic occupational lead exposure and testicular endocrine function. Hum Exp Toxicol. 1990 Nov;9(6):371–376. doi: 10.1177/096032719000900602. [DOI] [PubMed] [Google Scholar]
  15. McPherson C. P., Sellers T. A., Potter J. D., Bostick R. M., Folsom A. R. Reproductive factors and risk of endometrial cancer. The Iowa Women's Health Study. Am J Epidemiol. 1996 Jun 15;143(12):1195–1202. doi: 10.1093/oxfordjournals.aje.a008707. [DOI] [PubMed] [Google Scholar]
  16. Miller D. T., Paschal D. C., Gunter E. W., Stroud P. E., D'Angelo J. Determination of lead in blood using electrothermal atomisation atomic absorption spectrometry with a L'vov platform and matrix modifier. Analyst. 1987 Dec;112(12):1701–1704. doi: 10.1039/an9871201701. [DOI] [PubMed] [Google Scholar]
  17. Nriagu J. O. Saturnine gout among Roman aristocrats. Did lead poisoning contribute to the fall of the Empire? N Engl J Med. 1983 Mar 17;308(11):660–663. doi: 10.1056/NEJM198303173081123. [DOI] [PubMed] [Google Scholar]
  18. O'Flaherty E. J. Physiologically based models for bone-seeking elements. V. Lead absorption and disposition in childhood. Toxicol Appl Pharmacol. 1995 Apr;131(2):297–308. doi: 10.1006/taap.1995.1072. [DOI] [PubMed] [Google Scholar]
  19. Pirkle J. L., Brody D. J., Gunter E. W., Kramer R. A., Paschal D. C., Flegal K. M., Matte T. D. The decline in blood lead levels in the United States. The National Health and Nutrition Examination Surveys (NHANES) JAMA. 1994 Jul 27;272(4):284–291. [PubMed] [Google Scholar]
  20. Rodamilans M., Osaba M. J., To-Figueras J., Rivera Fillat F., Marques J. M., Pérez P., Corbella J. Lead toxicity on endocrine testicular function in an occupationally exposed population. Hum Toxicol. 1988 Mar;7(2):125–128. doi: 10.1177/096032718800700203. [DOI] [PubMed] [Google Scholar]
  21. Ronis M. J., Badger T. M., Shema S. J., Roberson P. K., Shaikh F. Effects on pubertal growth and reproduction in rats exposed to lead perinatally or continuously throughout development. J Toxicol Environ Health A. 1998 Feb 20;53(4):327–341. doi: 10.1080/009841098159312. [DOI] [PubMed] [Google Scholar]
  22. Ronis M. J., Badger T. M., Shema S. J., Roberson P. K., Templer L., Ringer D., Thomas P. E. Endocrine mechanisms underlying the growth effects of developmental lead exposure in the rat. J Toxicol Environ Health A. 1998 May 22;54(2):101–120. doi: 10.1080/009841098158944. [DOI] [PubMed] [Google Scholar]
  23. Ronis M. J., Gandy J., Badger T. Endocrine mechanisms underlying reproductive toxicity in the developing rat chronically exposed to dietary lead. J Toxicol Environ Health A. 1998 May 22;54(2):77–99. doi: 10.1080/009841098158935. [DOI] [PubMed] [Google Scholar]
  24. Six K. M., Goyer R. A. The influence of iron deficiency on tissue content and toxicity of ingested lead in the rat. J Lab Clin Med. 1972 Jan;79(1):128–136. [PubMed] [Google Scholar]
  25. Sokol Rebecca Z., Wang Saixi, Wan Yu-Jui Y., Stanczyk Frank Z., Gentzschein Elisabet, Chapin Robert E. Long-term, low-dose lead exposure alters the gonadotropin-releasing hormone system in the male rat. Environ Health Perspect. 2002 Sep;110(9):871–874. doi: 10.1289/ehp.02110871. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Tanner J. M. Normal growth and techniques of growth assessment. Clin Endocrinol Metab. 1986 Aug;15(3):411–451. doi: 10.1016/s0300-595x(86)80005-6. [DOI] [PubMed] [Google Scholar]
  27. Treloar S. A., Martin N. G. Age at menarche as a fitness trait: nonadditive genetic variance detected in a large twin sample. Am J Hum Genet. 1990 Jul;47(1):137–148. [PMC free article] [PubMed] [Google Scholar]
  28. Vivoli G., Fantuzzi G., Bergomi M., Tonelli E., Gatto M. R., Zanetti F., Del Dot M. Relationship between low lead exposure and somatic growth in adolescents. J Expo Anal Environ Epidemiol. 1993;3 (Suppl 1):201–209. [PubMed] [Google Scholar]
  29. Watson W. S., Hume R., Moore M. R. Oral absorption of lead and iron. Lancet. 1980 Aug 2;2(8188):236–237. doi: 10.1016/s0140-6736(80)90124-5. [DOI] [PubMed] [Google Scholar]
  30. Whincup P. H., Gilg J. A., Odoki K., Taylor S. J., Cook D. G. Age of menarche in contemporary British teenagers: survey of girls born between 1982 and 1986. BMJ. 2001 May 5;322(7294):1095–1096. doi: 10.1136/bmj.322.7294.1095. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Wu Tiejian, Mendola Pauline, Buck Germaine M. Ethnic differences in the presence of secondary sex characteristics and menarche among US girls: the Third National Health and Nutrition Examination Survey, 1988-1994. Pediatrics. 2002 Oct;110(4):752–757. doi: 10.1542/peds.110.4.752. [DOI] [PubMed] [Google Scholar]
  32. de Muinich Keizer S. M., Mul D. Trends in pubertal development in Europe. Hum Reprod Update. 2001 May-Jun;7(3):287–291. doi: 10.1093/humupd/7.3.287. [DOI] [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES