Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 2003 May;111(6):825–835. doi: 10.1289/ehp.111-1241504

Genomic and proteomic profiling of responses to toxic metals in human lung cells.

Angeline S Andrew 1, Amy J Warren 1, Aaron Barchowsky 1, Kaili A Temple 1, Linda Klei 1, Nicole V Soucy 1, Kimberley A O'Hara 1, Joshua W Hamilton 1
PMCID: PMC1241504  PMID: 12760830

Abstract

Examining global effects of toxic metals on gene expression can be useful for elucidating patterns of biological response, discovering underlying mechanisms of toxicity, and identifying candidate metal-specific genetic markers of exposure and response. Using a 1,200 gene nylon array, we examined changes in gene expression following low-dose, acute exposures of cadmium, chromium, arsenic, nickel, or mitomycin C (MMC) in BEAS-2B human bronchial epithelial cells. Total RNA was isolated from cells exposed to 3 M Cd(II) (as cadmium chloride), 10 M Cr(VI) (as sodium dichromate), 3 g/cm2 Ni(II) (as nickel subsulfide), 5 M or 50 M As(III) (as sodium arsenite), or 1 M MMC for 4 hr. Expression changes were verified at the protein level for several genes. Only a small subset of genes was differentially expressed in response to each agent: Cd, Cr, Ni, As (5 M), As (50 M), and MMC each differentially altered the expression of 25, 44, 31, 110, 65, and 16 individual genes, respectively. Few genes were commonly expressed among the various treatments. Only one gene was altered in response to all four metals (hsp90), and no gene overlapped among all five treatments. We also compared low-dose (5 M, noncytotoxic) and high-dose (50 M, cytotoxic) arsenic treatments, which surprisingly, affected expression of almost completely nonoverlapping subsets of genes, suggesting a threshold switch from a survival-based biological response at low doses to a death response at high doses.

Full Text

The Full Text of this article is available as a PDF (184.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abernathy C. O., Liu Y. P., Longfellow D., Aposhian H. V., Beck B., Fowler B., Goyer R., Menzer R., Rossman T., Thompson C. Arsenic: health effects, mechanisms of actions, and research issues. Environ Health Perspect. 1999 Jul;107(7):593–597. doi: 10.1289/ehp.99107593. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Alcedo J. A., Wetterhahn K. E. Chromium toxicity and carcinogenesis. Int Rev Exp Pathol. 1990;31:85–108. doi: 10.1016/b978-0-12-364931-7.50008-2. [DOI] [PubMed] [Google Scholar]
  3. Andrew A. S., Klei L. R., Barchowsky A. Nickel requires hypoxia-inducible factor-1 alpha, not redox signaling, to induce plasminogen activator inhibitor-1. Am J Physiol Lung Cell Mol Physiol. 2001 Sep;281(3):L607–L615. doi: 10.1152/ajplung.2001.281.3.L607. [DOI] [PubMed] [Google Scholar]
  4. Andrew A., Barchowsky A. Nickel-induced plasminogen activator inhibitor-1 expression inhibits the fibrinolytic activity of human airway epithelial cells. Toxicol Appl Pharmacol. 2000 Oct 1;168(1):50–57. doi: 10.1006/taap.2000.9009. [DOI] [PubMed] [Google Scholar]
  5. Andrew Angeline S., Karagas Margaret R., Hamilton Joshua W. Decreased DNA repair gene expression among individuals exposed to arsenic in United States drinking water. Int J Cancer. 2003 Apr 10;104(3):263–268. doi: 10.1002/ijc.10968. [DOI] [PubMed] [Google Scholar]
  6. Bae Dong-Soon, Hanneman William H., Yang Raymond S. H., Campain Julie A. Characterization of gene expression changes associated with MNNG, arsenic, or metal mixture treatment in human keratinocytes: application of cDNA microarray technology. Environ Health Perspect. 2002 Dec;110 (Suppl 6):931–941. doi: 10.1289/ehp.02110s6931. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Barceloux D. G. Nickel. J Toxicol Clin Toxicol. 1999;37(2):239–258. doi: 10.1081/clt-100102423. [DOI] [PubMed] [Google Scholar]
  8. Barchowsky A., Lannon B. M., Elmore L. C., Treadwell M. D. Increased focal adhesion kinase- and urokinase-type plasminogen activator receptor-associated cell signaling in endothelial cells exposed to asbestos. Environ Health Perspect. 1997 Sep;105 (Suppl 5):1131–1137. doi: 10.1289/ehp.97105s51131. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Bartosiewicz M., Penn S., Buckpitt A. Applications of gene arrays in environmental toxicology: fingerprints of gene regulation associated with cadmium chloride, benzo(a)pyrene, and trichloroethylene. Environ Health Perspect. 2001 Jan;109(1):71–74. doi: 10.1289/ehp.0110971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Baudouin C., Charveron M., Tarroux R., Gall Y. Environmental pollutants and skin cancer. Cell Biol Toxicol. 2002;18(5):341–348. doi: 10.1023/a:1019540316060. [DOI] [PubMed] [Google Scholar]
  11. Beyersmann D., Hechtenberg S. Cadmium, gene regulation, and cellular signalling in mammalian cells. Toxicol Appl Pharmacol. 1997 Jun;144(2):247–261. doi: 10.1006/taap.1997.8125. [DOI] [PubMed] [Google Scholar]
  12. Byrd D. M., Roegner M. L., Griffiths J. C., Lamm S. H., Grumski K. S., Wilson R., Lai S. Carcinogenic risks of inorganic arsenic in perspective. Int Arch Occup Environ Health. 1996;68(6):484–494. doi: 10.1007/BF00377874. [DOI] [PubMed] [Google Scholar]
  13. Cavigelli M., Li W. W., Lin A., Su B., Yoshioka K., Karin M. The tumor promoter arsenite stimulates AP-1 activity by inhibiting a JNK phosphatase. EMBO J. 1996 Nov 15;15(22):6269–6279. [PMC free article] [PubMed] [Google Scholar]
  14. Chen N. Y., Ma W. Y., Huang C., Ding M., Dong Z. Activation of PKC is required for arsenite-induced signal transduction. J Environ Pathol Toxicol Oncol. 2000;19(3):297–305. [PubMed] [Google Scholar]
  15. Dayan A. D., Paine A. J. Mechanisms of chromium toxicity, carcinogenicity and allergenicity: review of the literature from 1985 to 2000. Hum Exp Toxicol. 2001 Sep;20(9):439–451. doi: 10.1191/096032701682693062. [DOI] [PubMed] [Google Scholar]
  16. Denkhaus E., Salnikow K. Nickel essentiality, toxicity, and carcinogenicity. Crit Rev Oncol Hematol. 2002 Apr;42(1):35–56. doi: 10.1016/s1040-8428(01)00214-1. [DOI] [PubMed] [Google Scholar]
  17. Edelman D. A., Roggli V. L. The accumulation of nickel in human lungs. Environ Health Perspect. 1989 May;81:221–224. doi: 10.1289/ehp.8981221. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Gebel T. W. Genotoxicity of arsenical compounds. Int J Hyg Environ Health. 2001 Mar;203(3):249–262. doi: 10.1078/S1438-4639(04)70036-X. [DOI] [PubMed] [Google Scholar]
  19. Gebel T. Confounding variables in the environmental toxicology of arsenic. Toxicology. 2000 Apr 3;144(1-3):155–162. doi: 10.1016/s0300-483x(99)00202-4. [DOI] [PubMed] [Google Scholar]
  20. Hamadeh Hisham K., Bushel Pierre R., Jayadev Supriya, DiSorbo Olimpia, Bennett Lee, Li Leping, Tennant Raymond, Stoll Raymond, Barrett J. Carl, Paules Richard S. Prediction of compound signature using high density gene expression profiling. Toxicol Sci. 2002 Jun;67(2):232–240. doi: 10.1093/toxsci/67.2.232. [DOI] [PubMed] [Google Scholar]
  21. Hamadeh Hisham K., Bushel Pierre R., Jayadev Supriya, Martin Karla, DiSorbo Olimpia, Sieber Stella, Bennett Lee, Tennant Raymond, Stoll Raymond, Barrett J. Carl. Gene expression analysis reveals chemical-specific profiles. Toxicol Sci. 2002 Jun;67(2):219–231. doi: 10.1093/toxsci/67.2.219. [DOI] [PubMed] [Google Scholar]
  22. Hamilton J. W., Kaltreider R. C., Bajenova O. V., Ihnat M. A., McCaffrey J., Turpie B. W., Rowell E. E., Oh J., Nemeth M. J., Pesce C. A. Molecular basis for effects of carcinogenic heavy metals on inducible gene expression. Environ Health Perspect. 1998 Aug;106 (Suppl 4):1005–1015. doi: 10.1289/ehp.98106s41005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Hamilton J. W., Wetterhahn K. E. Differential effects of chromium(VI) on constitutive and inducible gene expression in chick embryo liver in vivo and correlation with chromium(VI)-induced DNA damage. Mol Carcinog. 1989;2(5):274–286. doi: 10.1002/mc.2940020508. [DOI] [PubMed] [Google Scholar]
  24. Hartwig A. Carcinogenicity of metal compounds: possible role of DNA repair inhibition. Toxicol Lett. 1998 Dec 28;102-103:235–239. doi: 10.1016/s0378-4274(98)00312-9. [DOI] [PubMed] [Google Scholar]
  25. Hartwig A., Groblinghoff U. D., Beyersmann D., Natarajan A. T., Filon R., Mullenders L. H. Interaction of arsenic(III) with nucleotide excision repair in UV-irradiated human fibroblasts. Carcinogenesis. 1997 Feb;18(2):399–405. doi: 10.1093/carcin/18.2.399. [DOI] [PubMed] [Google Scholar]
  26. Ihnat M. A., Lariviere J. P., Warren A. J., La Ronde N., Blaxall J. R., Pierre K. M., Turpie B. W., Hamilton J. W. Suppression of P-glycoprotein expression and multidrug resistance by DNA cross-linking agents. Clin Cancer Res. 1997 Aug;3(8):1339–1346. [PubMed] [Google Scholar]
  27. Jelinsky S. A., Estep P., Church G. M., Samson L. D. Regulatory networks revealed by transcriptional profiling of damaged Saccharomyces cerevisiae cells: Rpn4 links base excision repair with proteasomes. Mol Cell Biol. 2000 Nov;20(21):8157–8167. doi: 10.1128/mcb.20.21.8157-8167.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Järup L., Berglund M., Elinder C. G., Nordberg G., Vahter M. Health effects of cadmium exposure--a review of the literature and a risk estimate. Scand J Work Environ Health. 1998;24 (Suppl 1):1–51. [PubMed] [Google Scholar]
  29. Laden F., Neas L. M., Dockery D. W., Schwartz J. Association of fine particulate matter from different sources with daily mortality in six U.S. cities. Environ Health Perspect. 2000 Oct;108(10):941–947. doi: 10.1289/ehp.00108941. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Leikauf George D. Hazardous air pollutants and asthma. Environ Health Perspect. 2002 Aug;110 (Suppl 4):505–526. doi: 10.1289/ehp.02110s4505. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Liu J., Kadiiska M. B., Liu Y., Lu T., Qu W., Waalkes M. P. Stress-related gene expression in mice treated with inorganic arsenicals. Toxicol Sci. 2001 Jun;61(2):314–320. doi: 10.1093/toxsci/61.2.314. [DOI] [PubMed] [Google Scholar]
  32. Liu Y., Guyton K. Z., Gorospe M., Xu Q., Lee J. C., Holbrook N. J. Differential activation of ERK, JNK/SAPK and P38/CSBP/RK map kinase family members during the cellular response to arsenite. Free Radic Biol Med. 1996;21(6):771–781. doi: 10.1016/0891-5849(96)00176-1. [DOI] [PubMed] [Google Scholar]
  33. Léonard A., Lauwerys R. R. Carcinogenicity, teratogenicity and mutagenicity of arsenic. Mutat Res. 1980 Jan;75(1):49–62. doi: 10.1016/0165-1110(80)90027-5. [DOI] [PubMed] [Google Scholar]
  34. McCaffrey J., Wolf C. M., Hamilton J. W. Effects of the genotoxic carcinogen chromium(VI) on basal and hormone-inducible phosphoenolpyruvate carboxykinase gene expression in vivo: correlation with glucocorticoid- and developmentally regulated expression. Mol Carcinog. 1994 Aug;10(4):189–198. doi: 10.1002/mc.2940100403. [DOI] [PubMed] [Google Scholar]
  35. Menzel D. B., Rasmussen R. E., Lee E., Meacher D. M., Said B., Hamadeh H., Vargas M., Greene H., Roth R. N. Human lymphocyte heme oxygenase 1 as a response biomarker to inorganic arsenic. Biochem Biophys Res Commun. 1998 Sep 29;250(3):653–656. doi: 10.1006/bbrc.1998.9363. [DOI] [PubMed] [Google Scholar]
  36. Minet E., Michel G., Mottet D., Raes M., Michiels C. Transduction pathways involved in Hypoxia-Inducible Factor-1 phosphorylation and activation. Free Radic Biol Med. 2001 Oct 1;31(7):847–855. doi: 10.1016/s0891-5849(01)00657-8. [DOI] [PubMed] [Google Scholar]
  37. Porter A. C., Fanger G. R., Vaillancourt R. R. Signal transduction pathways regulated by arsenate and arsenite. Oncogene. 1999 Dec 16;18(54):7794–7802. doi: 10.1038/sj.onc.1203214. [DOI] [PubMed] [Google Scholar]
  38. Ross R. The smooth muscle cell. II. Growth of smooth muscle in culture and formation of elastic fibers. J Cell Biol. 1971 Jul;50(1):172–186. doi: 10.1083/jcb.50.1.172. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Rossman T. G., Uddin A. N., Burns F. J., Bosland M. C. Arsenite is a cocarcinogen with solar ultraviolet radiation for mouse skin: an animal model for arsenic carcinogenesis. Toxicol Appl Pharmacol. 2001 Oct 1;176(1):64–71. doi: 10.1006/taap.2001.9277. [DOI] [PubMed] [Google Scholar]
  40. Salnikow K., Blagosklonny M. V., Ryan H., Johnson R., Costa M. Carcinogenic nickel induces genes involved with hypoxic stress. Cancer Res. 2000 Jan 1;60(1):38–41. [PubMed] [Google Scholar]
  41. Samet J. M., Graves L. M., Quay J., Dailey L. A., Devlin R. B., Ghio A. J., Wu W., Bromberg P. A., Reed W. Activation of MAPKs in human bronchial epithelial cells exposed to metals. Am J Physiol. 1998 Sep;275(3 Pt 1):L551–L558. doi: 10.1152/ajplung.1998.275.3.L551. [DOI] [PubMed] [Google Scholar]
  42. Taketani S., Kohno H., Yoshinaga T., Tokunaga R. The human 32-kDa stress protein induced by exposure to arsenite and cadmium ions is heme oxygenase. FEBS Lett. 1989 Mar 13;245(1-2):173–176. doi: 10.1016/0014-5793(89)80215-7. [DOI] [PubMed] [Google Scholar]
  43. Vogt B. L., Rossman T. G. Effects of arsenite on p53, p21 and cyclin D expression in normal human fibroblasts -- a possible mechanism for arsenite's comutagenicity. Mutat Res. 2001 Jul 1;478(1-2):159–168. doi: 10.1016/s0027-5107(01)00137-3. [DOI] [PubMed] [Google Scholar]
  44. Williams M. D., Sandler A. B. The epidemiology of lung cancer. Cancer Treat Res. 2001;105:31–52. doi: 10.1007/978-1-4615-1589-0_2. [DOI] [PubMed] [Google Scholar]
  45. Wu W., Graves L. M., Jaspers I., Devlin R. B., Reed W., Samet J. M. Activation of the EGF receptor signaling pathway in human airway epithelial cells exposed to metals. Am J Physiol. 1999 Nov;277(5 Pt 1):L924–L931. doi: 10.1152/ajplung.1999.277.5.L924. [DOI] [PubMed] [Google Scholar]
  46. Yih Ling-Huei, Peck Konan, Lee Te-Chang. Changes in gene expression profiles of human fibroblasts in response to sodium arsenite treatment. Carcinogenesis. 2002 May;23(5):867–876. doi: 10.1093/carcin/23.5.867. [DOI] [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES