Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 2003 Jun;111(7):889–894. doi: 10.1289/ehp.5838

Association between arsenic exposure from a coal-burning power plant and urinary arsenic concentrations in Prievidza District, Slovakia.

Ulrich Ranft 1, Peter Miskovic 1, Beate Pesch 1, Pavel Jakubis 1, Elenora Fabianova 1, Tom Keegan 1, Andre Hergemöller 1, Marian Jakubis 1, Mark J Nieuwenhuijsen 1; EXPASCAN Study Group1
PMCID: PMC1241521  PMID: 12782488

Abstract

To assess the arsenic exposure of a population living in the vicinity of a coal-burning power plant with high arsenic emission in the Prievidza District, Slovakia, 548 spot urine samples were speciated for inorganic As (Asinorg), monomethylarsonic acid (MMA), dimethylarsinic acid (DMA), and their sum (Assum). The urine samples were collected from the population of a case-control study on nonmelanoma skin cancer (NMSC). A total of 411 samples with complete As speciations and sufficient urine quality and without fish consumption were used for statistical analysis. Although current environmental As exposure and urinary As concentrations were low (median As in soil within 5 km distance to the power plant, 41 micro g/g; median urinary Assum, 5.8 microg/L), there was a significant but weak association between As in soil and urinary Assum(r = 0.21, p < 0.01). We performed a multivariate regression analysis to calculate adjusted regression coefficients for environmental As exposure and other determinants of urinary As. Persons living in the vicinity of the plant had 27% higher Assum values (p < 0.01), based on elevated concentrations of the methylated species. A 32% increase of MMA occurred among subjects who consumed homegrown food (p < 0.001). NMSC cases had significantly higher levels of Assum, DMA, and Asinorg. The methylation index Asinorg/(MMA + DMA) was about 20% lower among cases (p < 0.05) and in men (p < 0.05) compared with controls and females, respectively.

Full Text

The Full Text of this article is available as a PDF (229.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abernathy C. O., Liu Y. P., Longfellow D., Aposhian H. V., Beck B., Fowler B., Goyer R., Menzer R., Rossman T., Thompson C. Arsenic: health effects, mechanisms of actions, and research issues. Environ Health Perspect. 1999 Jul;107(7):593–597. doi: 10.1289/ehp.99107593. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Basu A., Mahata J., Gupta S., Giri A. K. Genetic toxicology of a paradoxical human carcinogen, arsenic: a review. Mutat Res. 2001 May;488(2):171–194. doi: 10.1016/s1383-5742(01)00056-4. [DOI] [PubMed] [Google Scholar]
  3. Bencko V., Symon K. Health aspects of burning coal with a high arsenic content. I. Arsenic in hair, urine, and blood in children residing in a polluted area. Environ Res. 1977 Jun;13(3):378–385. doi: 10.1016/0013-9351(77)90018-4. [DOI] [PubMed] [Google Scholar]
  4. Boeniger M. F., Lowry L. K., Rosenberg J. Interpretation of urine results used to assess chemical exposure with emphasis on creatinine adjustments: a review. Am Ind Hyg Assoc J. 1993 Oct;54(10):615–627. doi: 10.1080/15298669391355134. [DOI] [PubMed] [Google Scholar]
  5. Buchet J. P., Lison D., Ruggeri M., Foa V., Elia G. Assessment of exposure to inorganic arsenic, a human carcinogen, due to the consumption of seafood. Arch Toxicol. 1996;70(11):773–778. doi: 10.1007/s002040050339. [DOI] [PubMed] [Google Scholar]
  6. Calderon R. L., Hudgens E., Le X. C., Schreinemachers D., Thomas D. J. Excretion of arsenic in urine as a function of exposure to arsenic in drinking water. Environ Health Perspect. 1999 Aug;107(8):663–667. doi: 10.1289/ehp.99107663. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Crecelius E., Yager J. Intercomparison of analytical methods for arsenic speciation in human urine. Environ Health Perspect. 1997 Jun;105(6):650–653. doi: 10.1289/ehp.97105650. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Fraser G. E., Lindsted K. D., Knutsen S. F., Beeson W. L., Bennett H., Shavlik D. J. Validity of dietary recall over 20 years among California Seventh-day Adventists. Am J Epidemiol. 1998 Oct 15;148(8):810–818. doi: 10.1093/oxfordjournals.aje.a009703. [DOI] [PubMed] [Google Scholar]
  9. Gebel T. W. Genotoxicity of arsenical compounds. Int J Hyg Environ Health. 2001 Mar;203(3):249–262. doi: 10.1078/S1438-4639(04)70036-X. [DOI] [PubMed] [Google Scholar]
  10. Gebel T. W., Suchenwirth R. H., Bolten C., Dunkelberg H. H. Human biomonitoring of arsenic and antimony in case of an elevated geogenic exposure. Environ Health Perspect. 1998 Jan;106(1):33–39. doi: 10.1289/ehp.9810633. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Goering P. L., Aposhian H. V., Mass M. J., Cebrián M., Beck B. D., Waalkes M. P. The enigma of arsenic carcinogenesis: role of metabolism. Toxicol Sci. 1999 May;49(1):5–14. doi: 10.1093/toxsci/49.1.5. [DOI] [PubMed] [Google Scholar]
  12. Hakala E., Pyy L. Assessment of exposure to inorganic arsenic by determining the arsenic species excreted in urine. Toxicol Lett. 1995 May;77(1-3):249–258. doi: 10.1016/0378-4274(95)03304-1. [DOI] [PubMed] [Google Scholar]
  13. Hwang Y. H., Bornschein R. L., Grote J., Menrath W., Roda S. Environmental arsenic exposure of children around a former copper smelter site. Environ Res. 1997 Jan;72(1):72–81. doi: 10.1006/enrs.1996.3691. [DOI] [PubMed] [Google Scholar]
  14. Karagas M. R., Stukel T. A., Morris J. S., Tosteson T. D., Weiss J. E., Spencer S. K., Greenberg E. R. Skin cancer risk in relation to toenail arsenic concentrations in a US population-based case-control study. Am J Epidemiol. 2001 Mar 15;153(6):559–565. doi: 10.1093/aje/153.6.559. [DOI] [PubMed] [Google Scholar]
  15. Kasiske B. L., Keane W. F. Renal diagnostic testing: past, present and future. Curr Opin Nephrol Hypertens. 1996 Nov;5(6):519–520. doi: 10.1097/00041552-199611000-00011. [DOI] [PubMed] [Google Scholar]
  16. Keegan T., Hong Bing, Thornton I., Farago M., Jakubis P., Jakubis M., Pesch B., Ranft U., Nieuwenhuijsen M. J., EXPASCAN Study Group Assessment of environmental arsenic levels in Prievidza district. J Expo Anal Environ Epidemiol. 2002 May;12(3):179–185. doi: 10.1038/sj.jea.7500216. [DOI] [PubMed] [Google Scholar]
  17. Kipnis V., Midthune D., Freedman L. S., Bingham S., Schatzkin A., Subar A., Carroll R. J. Empirical evidence of correlated biases in dietary assessment instruments and its implications. Am J Epidemiol. 2001 Feb 15;153(4):394–403. doi: 10.1093/aje/153.4.394. [DOI] [PubMed] [Google Scholar]
  18. Kurttio P., Komulainen H., Hakala E., Kahelin H., Pekkanen J. Urinary excretion of arsenic species after exposure to arsenic present in drinking water. Arch Environ Contam Toxicol. 1998 Apr;34(3):297–305. doi: 10.1007/s002449900321. [DOI] [PubMed] [Google Scholar]
  19. Mato J. M., Alvarez L., Ortiz P., Pajares M. A. S-adenosylmethionine synthesis: molecular mechanisms and clinical implications. Pharmacol Ther. 1997;73(3):265–280. doi: 10.1016/s0163-7258(96)00197-0. [DOI] [PubMed] [Google Scholar]
  20. Pesch Beate, Ranft Ulrich, Jakubis Pavel, Nieuwenhuijsen Mark J., Hergemöller Andre, Unfried Klaus, Jakubis Marian, Miskovic Peter, Keegan Tom. Environmental arsenic exposure from a coal-burning power plant as a potential risk factor for nonmelanoma skin carcinoma: results from a case-control study in the district of Prievidza, Slovakia. Am J Epidemiol. 2002 May 1;155(9):798–809. doi: 10.1093/aje/155.9.798. [DOI] [PubMed] [Google Scholar]
  21. Pi Jingbo, Yamauchi Hiroshi, Kumagai Yoshito, Sun Guifan, Yoshida Takahiko, Aikawa Hiroyuki, Hopenhayn-Rich Claudia, Shimojo Nobuhiro. Evidence for induction of oxidative stress caused by chronic exposure of Chinese residents to arsenic contained in drinking water. Environ Health Perspect. 2002 Apr;110(4):331–336. doi: 10.1289/ehp.02110331. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Poirier L. A., Brown A. T., Fink L. M., Wise C. K., Randolph C. J., Delongchamp R. R., Fonseca V. A. Blood S-adenosylmethionine concentrations and lymphocyte methylenetetrahydrofolate reductase activity in diabetes mellitus and diabetic nephropathy. Metabolism. 2001 Sep;50(9):1014–1018. doi: 10.1053/meta.2001.25655. [DOI] [PubMed] [Google Scholar]
  23. Rahman M., Tondel M., Ahmad S. A., Axelson O. Diabetes mellitus associated with arsenic exposure in Bangladesh. Am J Epidemiol. 1998 Jul 15;148(2):198–203. doi: 10.1093/oxfordjournals.aje.a009624. [DOI] [PubMed] [Google Scholar]
  24. Rahman M., Tondel M., Ahmad S. A., Chowdhury I. A., Faruquee M. H., Axelson O. Hypertension and arsenic exposure in Bangladesh. Hypertension. 1999 Jan;33(1):74–78. doi: 10.1161/01.hyp.33.1.74. [DOI] [PubMed] [Google Scholar]
  25. Schoof R. A., Yost L. J., Eickhoff J., Crecelius E. A., Cragin D. W., Meacher D. M., Menzel D. B. A market basket survey of inorganic arsenic in food. Food Chem Toxicol. 1999 Aug;37(8):839–846. doi: 10.1016/s0278-6915(99)00073-3. [DOI] [PubMed] [Google Scholar]
  26. Stýblo M., Thomas D. J. In vitro inhibition of glutathione reductase by arsenotriglutathione. Biochem Pharmacol. 1995 Mar 30;49(7):971–977. doi: 10.1016/0006-2952(95)00008-n. [DOI] [PubMed] [Google Scholar]
  27. Telolahy P., Morel G., Cluet J. L., Yang H. M., Thieffry N., de Ceaurriz J. An attempt to explain interindividual variability in 24-h urinary excretion of inorganic arsenic metabolites by C57 BL/6J mice. Toxicology. 1995 Nov 30;103(2):105–112. doi: 10.1016/0300-483x(95)03111-r. [DOI] [PubMed] [Google Scholar]
  28. Tice R. R., Yager J. W., Andrews P., Crecelius E. Effect of hepatic methyl donor status on urinary excretion and DNA damage in B6C3F1 mice treated with sodium arsenite. Mutat Res. 1997 Jun;386(3):315–334. doi: 10.1016/s1383-5742(97)00004-5. [DOI] [PubMed] [Google Scholar]
  29. Vahter M. Genetic polymorphism in the biotransformation of inorganic arsenic and its role in toxicity. Toxicol Lett. 2000 Mar 15;112-113:209–217. doi: 10.1016/s0378-4274(99)00271-4. [DOI] [PubMed] [Google Scholar]
  30. Yager J. W., Hicks J. B., Fabianova E. Airborne arsenic and urinary excretion of arsenic metabolites during boiler cleaning operations in a Slovak coal-fired power plant. Environ Health Perspect. 1997 Aug;105(8):836–842. doi: 10.1289/ehp.97105836. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. van Lieshout E. M., Peters W. H. Age and gender dependent levels of glutathione and glutathione S-transferases in human lymphocytes. Carcinogenesis. 1998 Oct;19(10):1873–1875. doi: 10.1093/carcin/19.10.1873. [DOI] [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES