Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 2003 Jun;111(7):962–970. doi: 10.1289/ehp.6020

Childhood leukemia: electric and magnetic fields as possible risk factors.

Joseph D Brain 1, Robert Kavet 1, David L McCormick 1, Charles Poole 1, Lewis B Silverman 1, Thomas J Smith 1, Peter A Valberg 1, R A Van Etten 1, James C Weaver 1
PMCID: PMC1241532  PMID: 12782499

Abstract

Numerous epidemiologic studies have reported associations between measures of power-line electric or magnetic fields (EMFs) and childhood leukemia. The basis for such associations remains unexplained. In children, acute lymphoblastic leukemia represents approximately three-quarters of all U.S. leukemia types. Some risk factors for childhood leukemia have been established, and others are suspected. Pathogenesis, as investigated in animal models, is consistent with the multistep model of acute leukemia development. Studies of carcinogenicity in animals, however, are overwhelmingly negative and do not support the hypothesis that EMF exposure is a significant risk factor for hematopoietic neoplasia. We may fail to observe effects from EMFs because, from a mechanistic perspective, the effects of EMFs on biology are very weak. Cells and organs function despite many sources of chemical "noise" (e.g., stochastic, temperature, concentration, mechanical, and electrical noise), which exceed the induced EMF "signal" by a large factor. However, the inability to detect EMF effects in bioassay systems may be caused by the choice made for "EMF exposure." "Contact currents" or "contact voltages" have been proposed as a novel exposure metric, because their magnitude is related to measured power-line magnetic fields. A contact current occurs when a person touches two conductive surfaces at different voltages. Modeled analyses support contact currents as a plausible metric because of correlations with residential magnetic fields and opportunity for exposure. The possible role of contact currents as an explanatory variable in the reported associations between EMFs and childhood leukemia will need to be clarified by further measurements, biophysical analyses, bioassay studies, and epidemiology.

Full Text

The Full Text of this article is available as a PDF (152.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adair RK. Constraints on biological effects of weak extremely-low-frequency electromagnetic fields. Phys Rev A. 1991 Jan 15;43(2):1039–1048. doi: 10.1103/physreva.43.1039. [DOI] [PubMed] [Google Scholar]
  2. Adair Robert K., Astumian R. Dean, Weaver James C. Detection of weak electric fields by sharks, rays, and skates. Chaos. 1998 Sep;8(3):576–587. doi: 10.1063/1.166339. [DOI] [PubMed] [Google Scholar]
  3. Ahlbom A., Day N., Feychting M., Roman E., Skinner J., Dockerty J., Linet M., McBride M., Michaelis J., Olsen J. H. A pooled analysis of magnetic fields and childhood leukaemia. Br J Cancer. 2000 Sep;83(5):692–698. doi: 10.1054/bjoc.2000.1376. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Ahlbom I. C., Cardis E., Green A., Linet M., Savitz D., Swerdlow A., ICNIRP (International Commission for Non-Ionizing Radiation Protection) Standing Committee on Epidemiology Review of the epidemiologic literature on EMF and Health. Environ Health Perspect. 2001 Dec;109 (Suppl 6):911–933. doi: 10.1289/ehp.109-1240626. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Astumian R. D., Weaver J. C., Adair R. K. Rectification and signal averaging of weak electric fields by biological cells. Proc Natl Acad Sci U S A. 1995 Apr 25;92(9):3740–3743. doi: 10.1073/pnas.92.9.3740. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Babbitt J. T., Kharazi A. I., Taylor J. M., Bonds C. B., Mirell S. G., Frumkin E., Zhuang D., Hahn T. J. Hematopoietic neoplasia in C57BL/6 mice exposed to split-dose ionizing radiation and circularly polarized 60 Hz magnetic fields. Carcinogenesis. 2000 Jul;21(7):1379–1389. [PubMed] [Google Scholar]
  7. Berns A., van der Lugt N., Alkema M., van Lohuizen M., Domen J., Acton D., Allen J., Laird P. W., Jonkers J. Mouse model systems to study multistep tumorigenesis. Cold Spring Harb Symp Quant Biol. 1994;59:435–447. doi: 10.1101/sqb.1994.059.01.049. [DOI] [PubMed] [Google Scholar]
  8. Boorman G. A., McCormick D. L., Findlay J. C., Hailey J. R., Gauger J. R., Johnson T. R., Kovatch R. M., Sills R. C., Haseman J. K. Chronic toxicity/oncogenicity evaluation of 60 Hz (power frequency) magnetic fields in F344/N rats. Toxicol Pathol. 1999 May-Jun;27(3):267–278. doi: 10.1177/019262339902700301. [DOI] [PubMed] [Google Scholar]
  9. Boorman G. A., Rafferty C. N., Ward J. M., Sills R. C. Leukemia and lymphoma incidence in rodents exposed to low-frequency magnetic fields. Radiat Res. 2000 May;153(5 Pt 2):627–636. doi: 10.1667/0033-7587(2000)153[0627:laliir]2.0.co;2. [DOI] [PubMed] [Google Scholar]
  10. Dawson T. W., Caputa K., Stuchly M. A., Kavet R. Electric fields in the human body resulting from 60-Hz contact currents. IEEE Trans Biomed Eng. 2001 Sep;48(9):1020–1026. doi: 10.1109/10.942592. [DOI] [PubMed] [Google Scholar]
  11. Donehower L. A. The p53-deficient mouse: a model for basic and applied cancer studies. Semin Cancer Biol. 1996 Oct;7(5):269–278. doi: 10.1006/scbi.1996.0035. [DOI] [PubMed] [Google Scholar]
  12. Eischen C. M., Weber J. D., Roussel M. F., Sherr C. J., Cleveland J. L. Disruption of the ARF-Mdm2-p53 tumor suppressor pathway in Myc-induced lymphomagenesis. Genes Dev. 1999 Oct 15;13(20):2658–2669. doi: 10.1101/gad.13.20.2658. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Fear E. C., Stuchly M. A. Biological cells with gap junctions in low-frequency electric fields. IEEE Trans Biomed Eng. 1998 Jul;45(7):856–866. doi: 10.1109/10.686793. [DOI] [PubMed] [Google Scholar]
  14. Gowrishankar Thiruvallur R., Weaver James C. An approach to electrical modeling of single and multiple cells. Proc Natl Acad Sci U S A. 2003 Mar 7;100(6):3203–3208. doi: 10.1073/pnas.0636434100. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Greaves M. F. Aetiology of acute leukaemia. Lancet. 1997 Feb 1;349(9048):344–349. doi: 10.1016/s0140-6736(96)09412-3. [DOI] [PubMed] [Google Scholar]
  16. Greaves M. F., Alexander F. E. An infectious etiology for common acute lymphoblastic leukemia in childhood? Leukemia. 1993 Mar;7(3):349–360. [PubMed] [Google Scholar]
  17. Greenland S., Sheppard A. R., Kaune W. T., Poole C., Kelsh M. A. A pooled analysis of magnetic fields, wire codes, and childhood leukemia. Childhood Leukemia-EMF Study Group. Epidemiology. 2000 Nov;11(6):624–634. doi: 10.1097/00001648-200011000-00003. [DOI] [PubMed] [Google Scholar]
  18. Harris A. W., Basten A., Gebski V., Noonan D., Finnie J., Bath M. L., Bangay M. J., Repacholi M. H. A test of lymphoma induction by long-term exposure of E mu-Pim1 transgenic mice to 50 Hz magnetic fields. Radiat Res. 1998 Mar;149(3):300–307. [PubMed] [Google Scholar]
  19. Hatch E. E., Kleinerman R. A., Linet M. S., Tarone R. E., Kaune W. T., Auvinen A., Baris D., Robison L. L., Wacholder S. Do confounding or selection factors of residential wiring codes and magnetic fields distort findings of electromagnetic fields studies? Epidemiology. 2000 Mar;11(2):189–198. doi: 10.1097/00001648-200003000-00019. [DOI] [PubMed] [Google Scholar]
  20. Higuchi Masakazu, O'Brien Darin, Kumaravelu Parasakthy, Lenny Noel, Yeoh Eng-Juh, Downing James R. Expression of a conditional AML1-ETO oncogene bypasses embryonic lethality and establishes a murine model of human t(8;21) acute myeloid leukemia. Cancer Cell. 2002 Feb;1(1):63–74. doi: 10.1016/s1535-6108(02)00016-8. [DOI] [PubMed] [Google Scholar]
  21. Huettner C. S., Zhang P., Van Etten R. A., Tenen D. G. Reversibility of acute B-cell leukaemia induced by BCR-ABL1. Nat Genet. 2000 Jan;24(1):57–60. doi: 10.1038/71691. [DOI] [PubMed] [Google Scholar]
  22. Jacks T., Remington L., Williams B. O., Schmitt E. M., Halachmi S., Bronson R. T., Weinberg R. A. Tumor spectrum analysis in p53-mutant mice. Curr Biol. 1994 Jan 1;4(1):1–7. doi: 10.1016/s0960-9822(00)00002-6. [DOI] [PubMed] [Google Scholar]
  23. Kaune W. T., Dovan T., Kavet R. I., Savitz D. A., Neutra R. R. Study of high- and low-current-configuration homes from the 1988 Denver Childhood Cancer Study. Bioelectromagnetics. 2002 Apr;23(3):177–188. doi: 10.1002/bem.10001. [DOI] [PubMed] [Google Scholar]
  24. Kavet R., Stuchly M. A., Bailey W. H., Bracken T. D. Evaluation of biological effects, dosimetric models, and exposure assessment related to ELF electric- and magnetic-field guidelines. Appl Occup Environ Hyg. 2001 Dec;16(12):1118–1138. doi: 10.1080/10473220127412. [DOI] [PubMed] [Google Scholar]
  25. Kavet R., Zaffanella L. E., Daigle J. P., Ebi K. L. The possible role of contact current in cancer risk associated with residential magnetic fields. Bioelectromagnetics. 2000 Oct;21(7):538–553. [PubMed] [Google Scholar]
  26. Kavet Robert, Zaffanella Luciano E. Contact voltage measured in residences: implications to the association between magnetic fields and childhood leukemia. Bioelectromagnetics. 2002 Sep;23(6):464–474. doi: 10.1002/bem.10038. [DOI] [PubMed] [Google Scholar]
  27. Kinlen L. J. Epidemiological evidence for an infective basis in childhood leukaemia. Br J Cancer. 1995 Jan;71(1):1–5. doi: 10.1038/bjc.1995.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Kirschvink J. L., Kobayashi-Kirschvink A., Woodford B. J. Magnetite biomineralization in the human brain. Proc Natl Acad Sci U S A. 1992 Aug 15;89(16):7683–7687. doi: 10.1073/pnas.89.16.7683. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Kirschvink J. L., Walker M. M., Diebel C. E. Magnetite-based magnetoreception. Curr Opin Neurobiol. 2001 Aug;11(4):462–467. doi: 10.1016/s0959-4388(00)00235-x. [DOI] [PubMed] [Google Scholar]
  30. Li S., Ilaria R. L., Jr, Million R. P., Daley G. Q., Van Etten R. A. The P190, P210, and P230 forms of the BCR/ABL oncogene induce a similar chronic myeloid leukemia-like syndrome in mice but have different lymphoid leukemogenic activity. J Exp Med. 1999 May 3;189(9):1399–1412. doi: 10.1084/jem.189.9.1399. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Linet M. S., Ries L. A., Smith M. A., Tarone R. E., Devesa S. S. Cancer surveillance series: recent trends in childhood cancer incidence and mortality in the United States. J Natl Cancer Inst. 1999 Jun 16;91(12):1051–1058. doi: 10.1093/jnci/91.12.1051. [DOI] [PubMed] [Google Scholar]
  32. Look A. T. Oncogenic transcription factors in the human acute leukemias. Science. 1997 Nov 7;278(5340):1059–1064. doi: 10.1126/science.278.5340.1059. [DOI] [PubMed] [Google Scholar]
  33. Mandeville R., Franco E., Sidrac-Ghali S., Paris-Nadon L., Rocheleau N., Mercier G., Désy M., Gaboury L. Evaluation of the potential carcinogenicity of 60 Hz linear sinusoidal continuous-wave magnetic fields in Fischer F344 rats. FASEB J. 1997 Nov;11(13):1127–1136. doi: 10.1096/fasebj.11.13.9367347. [DOI] [PubMed] [Google Scholar]
  34. McCormick D. L., Boorman G. A., Findlay J. C., Hailey J. R., Johnson T. R., Gauger J. R., Pletcher J. M., Sills R. C., Haseman J. K. Chronic toxicity/oncogenicity evaluation of 60 Hz (power frequency) magnetic fields in B6C3F1 mice. Toxicol Pathol. 1999 May-Jun;27(3):279–285. doi: 10.1177/019262339902700302. [DOI] [PubMed] [Google Scholar]
  35. McCormick D. L., Ryan B. M., Findlay J. C., Gauger J. R., Johnson T. R., Morrissey R. L., Boorman G. A. Exposure to 60 Hz magnetic fields and risk of lymphoma in PIM transgenic and TSG-p53 (p53 knockout) mice. Carcinogenesis. 1998 Sep;19(9):1649–1653. doi: 10.1093/carcin/19.9.1649. [DOI] [PubMed] [Google Scholar]
  36. Miller R. W. Persons with exceptionally high risk of leukemia. Cancer Res. 1967 Dec;27(12):2420–2423. [PubMed] [Google Scholar]
  37. Pui C. H., Behm F. G., Raimondi S. C., Dodge R. K., George S. L., Rivera G. K., Mirro J., Jr, Kalwinsky D. K., Dahl G. V., Murphy S. B. Secondary acute myeloid leukemia in children treated for acute lymphoid leukemia. N Engl J Med. 1989 Jul 20;321(3):136–142. doi: 10.1056/NEJM198907203210302. [DOI] [PubMed] [Google Scholar]
  38. Robison L. L., Neglia J. P. Epidemiology of Down syndrome and childhood acute leukemia. Prog Clin Biol Res. 1987;246:19–32. [PubMed] [Google Scholar]
  39. Savitz David A. Health effects of electric and magnetic fields: are we done yet? Epidemiology. 2003 Jan;14(1):15–17. doi: 10.1097/00001648-200301000-00008. [DOI] [PubMed] [Google Scholar]
  40. Shen Y. H., Shao B. J., Chiang H., Fu Y. D., Yu M. The effects of 50 Hz magnetic field exposure on dimethylbenz(alpha)anthracene induced thymic lymphoma/leukemia in mice. Bioelectromagnetics. 1997;18(5):360–364. [PubMed] [Google Scholar]
  41. Tucker M. A., Meadows A. T., Boice J. D., Jr, Stovall M., Oberlin O., Stone B. J., Birch J., Voûte P. A., Hoover R. N., Fraumeni J. F., Jr Leukemia after therapy with alkylating agents for childhood cancer. J Natl Cancer Inst. 1987 Mar;78(3):459–464. [PubMed] [Google Scholar]
  42. Unnikrishnan I., Radfar A., Jenab-Wolcott J., Rosenberg N. p53 mediates apoptotic crisis in primary Abelson virus-transformed pre-B cells. Mol Cell Biol. 1999 Jul;19(7):4825–4831. doi: 10.1128/mcb.19.7.4825. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Valberg P. A., Kavet R., Rafferty C. N. Can low-level 50/60 Hz electric and magnetic fields cause biological effects? Radiat Res. 1997 Jul;148(1):2–21. [PubMed] [Google Scholar]
  44. Weaver J. C., Astumian R. D. The response of living cells to very weak electric fields: the thermal noise limit. Science. 1990 Jan 26;247(4941):459–462. doi: 10.1126/science.2300806. [DOI] [PubMed] [Google Scholar]
  45. Weaver J. C., Vaughan T. E., Astumian R. D. Biological sensing of small field differences by magnetically sensitive chemical reactions. Nature. 2000 Jun 8;405(6787):707–709. doi: 10.1038/35015128. [DOI] [PubMed] [Google Scholar]
  46. Weaver J. C., Vaughan T. E., Martin G. T. Biological effects due to weak electric and magnetic fields: the temperature variation threshold. Biophys J. 1999 Jun;76(6):3026–3030. doi: 10.1016/S0006-3495(99)77455-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Weaver James C. Understanding conditions for which biological effects of nonionizing electromagnetic fields can be expected. Bioelectrochemistry. 2002 May 15;56(1-2):207–209. doi: 10.1016/s1567-5394(02)00038-5. [DOI] [PubMed] [Google Scholar]
  48. Wertheimer N., Leeper E. Electrical wiring configurations and childhood cancer. Am J Epidemiol. 1979 Mar;109(3):273–284. doi: 10.1093/oxfordjournals.aje.a112681. [DOI] [PubMed] [Google Scholar]
  49. Yasui M., Kikuchi T., Ogawa M., Otaka Y., Tsuchitani M., Iwata H. Carcinogenicity test of 50 Hz sinusoidal magnetic fields in rats. Bioelectromagnetics. 1997;18(8):531–540. doi: 10.1002/(sici)1521-186x(1997)18:8<531::aid-bem1>3.0.co;2-3. [DOI] [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES