Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 2003 Jun;111(7):981–991. doi: 10.1289/ehp.5931

World Trade Center fine particulate matter causes respiratory tract hyperresponsiveness in mice.

Stephen H Gavett 1, Najwa Haykal-Coates 1, Jerry W Highfill 1, Allen D Ledbetter 1, Lung Chi Chen 1, Mitchell D Cohen 1, Jack R Harkema 1, James G Wagner 1, Daniel L Costa 1
PMCID: PMC1241535  PMID: 12782502

Abstract

Pollutants originating from the destruction of the World Trade Center (WTC) in New York City on 11 September 2001 have been reported to cause adverse respiratory responses in rescue workers and nearby residents. We examined whether WTC-derived fine particulate matter [particulate matter with a mass median aerodynamic diameter < 2.5 microm (PM2.5)] has detrimental respiratory effects in mice to contribute to the risk assessment of WTC-derived pollutants. Samples of WTC PM2.5 were derived from settled dust collected at several locations around Ground Zero on 12 and 13 September 2001. Aspirated samples of WTC PM2.5 induced mild to moderate degrees of pulmonary inflammation 1 day after exposure but only at a relatively high dose (100 microg). This response was not as great as that caused by 100 microg PM2.5 derived from residual oil fly ash (ROFA) or Washington, DC, ambient air PM [National Institute of Standards and Technology, Standard Reference Material (SRM) 1649a]. However, this same dose of WTC PM2.5 caused airway hyperresponsiveness to methacholine aerosol comparable to that from SRM 1649a and to a greater degree than that from ROFA. Mice exposed to lower doses by aspiration or inhalation exposure did not develop significant inflammation or hyperresponsiveness. These results show that exposure to high levels of WTC PM2.5 can promote mechanisms of airflow obstruction in mice. Airborne concentrations of WTC PM2.5 that would cause comparable doses in people are high (approximately 425 microg/m3 for 8 hr) but conceivable in the aftermath of the collapse of the towers when rescue and salvage efforts were in effect. We conclude that a high-level exposure to WTC PM2.5 could cause pulmonary inflammation and airway hyperresponsiveness in people. The effects of chronic exposures to lower levels of WTC PM2.5, the persistence of any respiratory effects, and the effects of coarser WTC PM are unknown and were not examined in these studies. Degree of exposure and respiratory protection, individual differences in sensitivity to WTC PM2.5, and species differences in responses must be considered in assessing the risks of exposure to WTC PM2.5.

Full Text

The Full Text of this article is available as a PDF (1.8 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adamson I. Y., Bowden D. H. Dose response of the pulmonary macrophagic system to various particulates and its relationship to transepithelial passage of free particles. Exp Lung Res. 1981 Aug;2(3):165–175. doi: 10.3109/01902148109052312. [DOI] [PubMed] [Google Scholar]
  2. Anderson S. D., Daviskas E. The mechanism of exercise-induced asthma is ... J Allergy Clin Immunol. 2000 Sep;106(3):453–459. doi: 10.1067/mai.2000.109822. [DOI] [PubMed] [Google Scholar]
  3. Asgharian B., Wood R., Schlesinger R. B. Empirical modeling of particle deposition in the alveolar region of the lungs: a basis for interspecies extrapolation. Fundam Appl Toxicol. 1995 Sep;27(2):232–238. doi: 10.1006/faat.1995.1128. [DOI] [PubMed] [Google Scholar]
  4. Bonham A. C., Chen C. Y., Mutoh T., Joad J. P. Lung C-fiber CNS reflex: role in the respiratory consequences of extended environmental tobacco smoke exposure in young guinea pigs. Environ Health Perspect. 2001 Aug;109 (Suppl 4):573–578. doi: 10.1289/ehp.01109s4573. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Costa D. L., Dreher K. L. Bioavailable transition metals in particulate matter mediate cardiopulmonary injury in healthy and compromised animal models. Environ Health Perspect. 1997 Sep;105 (Suppl 5):1053–1060. doi: 10.1289/ehp.97105s51053. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Donaldson K., Gilmour M. I., MacNee W. Asthma and PM10. Respir Res. 2000 Jul 3;1(1):12–15. doi: 10.1186/rr5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Driscoll K. E., Costa D. L., Hatch G., Henderson R., Oberdorster G., Salem H., Schlesinger R. B. Intratracheal instillation as an exposure technique for the evaluation of respiratory tract toxicity: uses and limitations. Toxicol Sci. 2000 May;55(1):24–35. doi: 10.1093/toxsci/55.1.24. [DOI] [PubMed] [Google Scholar]
  8. Eschenbacher W. L., Gross K. B., Muench S. P., Chan T. L. Inhalation of an alkaline aerosol by subjects with mild asthma does not result in bronchoconstriction. Am Rev Respir Dis. 1991 Feb;143(2):341–345. doi: 10.1164/ajrccm/143.2.341. [DOI] [PubMed] [Google Scholar]
  9. Foster W. M., Walters D. M., Longphre M., Macri K., Miller L. M. Methodology for the measurement of mucociliary function in the mouse by scintigraphy. J Appl Physiol (1985) 2001 Mar;90(3):1111–1117. doi: 10.1152/jappl.2001.90.3.1111. [DOI] [PubMed] [Google Scholar]
  10. Fredberg J. J. Frozen objects: small airways, big breaths, and asthma. J Allergy Clin Immunol. 2000 Oct;106(4):615–624. doi: 10.1067/mai.2000.109429. [DOI] [PubMed] [Google Scholar]
  11. Gavett S. H., Madison S. L., Dreher K. L., Winsett D. W., McGee J. K., Costa D. L. Metal and sulfate composition of residual oil fly ash determines airway hyperreactivity and lung injury in rats. Environ Res. 1997 Feb;72(2):162–172. doi: 10.1006/enrs.1997.3732. [DOI] [PubMed] [Google Scholar]
  12. Gavett S. H., Madison S. L., Stevens M. A., Costa D. L. Residual oil fly ash amplifies allergic cytokines, airway responsiveness, and inflammation in mice. Am J Respir Crit Care Med. 1999 Dec;160(6):1897–1904. doi: 10.1164/ajrccm.160.6.9901053. [DOI] [PubMed] [Google Scholar]
  13. Graham J. A., Miller F. J., Davies D. W., Hiteshew M. E., Walsh L. C., 3rd Inhalation studies of Mt. St. Helens volcanic ash in animals. I. Introduction and exposure system. Environ Res. 1985 Jun;37(1):61–71. doi: 10.1016/0013-9351(85)90049-0. [DOI] [PubMed] [Google Scholar]
  14. Hamelmann E., Schwarze J., Takeda K., Oshiba A., Larsen G. L., Irvin C. G., Gelfand E. W. Noninvasive measurement of airway responsiveness in allergic mice using barometric plethysmography. Am J Respir Crit Care Med. 1997 Sep;156(3 Pt 1):766–775. doi: 10.1164/ajrccm.156.3.9606031. [DOI] [PubMed] [Google Scholar]
  15. Henderson R. F., Benson J. M., Hahn F. F., Hobbs C. H., Jones R. K., Mauderly J. L., McClellan R. O., Pickrell J. A. New approaches for the evaluation of pulmonary toxicity: bronchoalveolar lavage fluid analysis. Fundam Appl Toxicol. 1985 Jun;5(3):451–458. doi: 10.1016/0272-0590(85)90092-2. [DOI] [PubMed] [Google Scholar]
  16. Kodavanti U. P., Hauser R., Christiani D. C., Meng Z. H., McGee J., Ledbetter A., Richards J., Costa D. L. Pulmonary responses to oil fly ash particles in the rat differ by virtue of their specific soluble metals. Toxicol Sci. 1998 Jun;43(2):204–212. doi: 10.1006/toxs.1998.2460. [DOI] [PubMed] [Google Scholar]
  17. McGee John K., Chen Lung Chi, Cohen Mitchell D., Chee Glen R., Prophete Colette M., Haykal-Coates Najwa, Wasson Shirley J., Conner Teri L., Costa Daniel L., Gavett Stephen H. Chemical analysis of World Trade Center fine particulate matter for use in toxicologic assessment. Environ Health Perspect. 2003 Jun;111(7):972–980. doi: 10.1289/ehp.5930. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Ménache M. G., Miller F. J., Raabe O. G. Particle inhalability curves for humans and small laboratory animals. Ann Occup Hyg. 1995 Jun;39(3):317–328. [PubMed] [Google Scholar]
  19. Nel A. E., Diaz-Sanchez D., Li N. The role of particulate pollutants in pulmonary inflammation and asthma: evidence for the involvement of organic chemicals and oxidative stress. Curr Opin Pulm Med. 2001 Jan;7(1):20–26. doi: 10.1097/00063198-200101000-00004. [DOI] [PubMed] [Google Scholar]
  20. Overton J. H., Kimbell J. S., Miller F. J. Dosimetry modeling of inhaled formaldehyde: the human respiratory tract. Toxicol Sci. 2001 Nov;64(1):122–134. doi: 10.1093/toxsci/64.1.122. [DOI] [PubMed] [Google Scholar]
  21. Peden D. B. Air pollution in asthma: effect of pollutants on airway inflammation. Ann Allergy Asthma Immunol. 2001 Dec;87(6 Suppl 3):12–17. doi: 10.1016/s1081-1206(10)62334-4. [DOI] [PubMed] [Google Scholar]
  22. Prezant David J., Weiden Michael, Banauch Gisela I., McGuinness Georgeann, Rom William N., Aldrich Thomas K., Kelly Kerry J. Cough and bronchial responsiveness in firefighters at the World Trade Center site. N Engl J Med. 2002 Sep 9;347(11):806–815. doi: 10.1056/NEJMoa021300. [DOI] [PubMed] [Google Scholar]
  23. Schlesinger R. B. Comparative deposition of inhaled aerosols in experimental animals and humans: a review. J Toxicol Environ Health. 1985;15(2):197–214. doi: 10.1080/15287398509530647. [DOI] [PubMed] [Google Scholar]
  24. Tobacco: promises are not enough. Lancet. 1997 Jul 5;350(9070):1–1. [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES