Abstract
目的
探讨终末期肾病(ESRD)患者血清晚期糖基化终末产物(AGEs)对自体动静脉内瘘(AVF)狭窄的影响。
方法
前瞻性纳入2022年2月~6月于桂林医学院附属医院肾内科住院首次行标准自体动静脉内瘘(AVF)的终末期肾病患者,收集患者术前一般资料、临床检测指标、造瘘前术肢血管超声的数据,采用酶联免疫吸附法(ELISA)检测术前血清AGEs水平。根据术后2个月内是否狭窄分为狭窄组与非狭窄组,比较各组间AGEs及临床指标的差异性,采用Logistic 回归分析法分析动静脉内瘘狭窄的独立危险因素,采用受试者工作特征(ROC)曲线分析AGEs临床风险指标预测动静脉内瘘术后狭窄的灵敏度和特异度。
结果
共纳入94例患者,术后出现动静脉内瘘狭窄34例,未出现动静脉内瘘狭窄60例;狭窄组与非狭窄组间糖尿病患者数量差异具有统计学意义(P<0.001)。Spearman相关性分析提示AGEs水平与磷呈负相关(P<0.05);狭窄组患者血清AGEs水平明显高于非狭窄组(Z=-2.837, P=0.005);多因素Logistic回归分析提示AGEs为动静脉内瘘术后狭窄的独立危险因素(OR=1.251, 95% CI=1.096-1.423, P<0.001);受试者工作特征(ROC)曲线分析提示:AGEs预测自体动静脉内瘘狭窄曲线下面积为0.677(P=0.007, 95% CI:0.572-0.770),最佳截断值为8.43 µg/mL,特异性为90.00%,灵敏度为52.94%;AGEs联合纤维蛋白原预测自体动静脉内瘘狭窄曲线下面积为0.763(P<0.001,95% CI: 0.664-0.844),最佳截断值为0.30,特异性为73.33%,灵敏度为70.59%。
结论
血清AGEs是自体动静脉内瘘术后狭窄的独立危险因素,血清AGEs联合纤维蛋白原构建的风险模型可提高预测自体动静脉内瘘术后狭窄的效能。
Keywords: 晚期糖基化终末产物, 动静脉内瘘狭窄, 终末期肾病, 纤维蛋白原
Abstract
Objective
To investigate the effect of serum advanced glycation endproducts (AGEs) on stenosis after first autologous arteriovenous fistula (AVF) in patients with end-stage renal disease (ESRD).
Methods
Patients with ESRD undergoing standard native arteriovenous fistula (AVF) for the first time in the Department of Nephrology, Affiliated Hospital of Guilin Medical University from February to June 2022 were prospectively enrolled. The preoperative general data, clinical examination results and ultrasound data of the operated limbs were collected. The patients with and without stenosis within 2 months after the operation were compared for preoperative serum AGEs levels detected using ELISA and the clinical parameters. Logistic regression analysis was used to analyze the independent risk factors of AVF stenosis, and the sensitivity and specificity of AGEs for predicting postoperative stenosis were analyzed using receiver-operating characteristic (ROC) curve.
Results
Of the 94 patients enrolled, 34 had postoperative arteriovenous stenosis and 60 had no stenosis. The number of diabetic patients differed significantly between stenosis group and non-stenosis group (P<0.001). Serum AGEs levels, which were negatively correlated with serum phosphorus level (P<0.05), were significantly higher in stenosis group than in non-stenosis group (Z=-2.837, P=0.005). Serum AGE level was an independent risk factor for postoperative stenosis after AVF (OR=1.251, 95% CI:1.096-1.423, P<0.001). For predicting AVF stenosis, the area under the ROC curve (AUC) of AGEs was 0.677 (P=0.007, 95% CI: 0.572-0.770), with a specificity of 90.00% and a sensitivity of 52.94% at the optimal cut-off value of 8.43 µg/mL; AGEs combined with fibrinogen had an AUC of 0.763 (P<0.001, 95% CI: 0.664-0.844), with a specificity of 73.33% and a sensitivity of 70.59% at the optimal cut-off value of 0.30.
Conclusions
Elevated serum AGEs level is an independent risk factor for postoperative AVF stenosis, and its combination with fibrinogen has a better efficacy for predicting postoperative AVF stenosis.
Keywords: advanced glycation end products, arteriovenous fistula stenosis, end-stage renal disease, fibrinogen
肾脏替代治疗是终末期肾病(ESRD)患者的主要治疗方法,包括血液透析(HD)、腹膜透析(PD)及肾移植,透析治疗现已成为患者维持生命的主要治疗方法,其中,维持性血液透析(MHD)最为常用,占全部透析治疗的90%左右[1]。自体动静脉内瘘(AVF) 作为MHD患者主要的血管通路,与其他通路相比,它使用时间更长、并发症更少,是血液透析患者的首要选择[2],也是保证维持性血液透析患者生命安全最为重要的血管通路[3, 4]。内瘘狭窄已成为内瘘血栓形成和内瘘失功的主要原因,同时是血液透析人群透析不充分、死亡和高住院率的主要原因之一[5]。
晚期糖基化终末产物是蛋白质的氨基组、脂质、脂蛋白等与还原糖的醛基间发生非酶促糖基化反应,经过一系列脱水、氧化和化学重排,产生高活性的羰基化合物,进而与蛋白质的自由氨基发生凝聚,生成不可逆的终产物,称为晚期糖基化终末产物(AGEs)[6, 7]。AGEs可通过非RAGE依赖机制及RAGE依赖机制促进氧化应激、炎症反应等反应,导致内皮功能与结构发生改变[8]。正常情况下,晚期糖基化终末产物的水平随着年龄的增长而缓慢增加;在糖尿病患者中,高血糖状态会导致糖化反应加速,修饰蛋白增多,晚期糖基化终末产物生成的速度明显加快;慢性肾衰竭病人因肾脏生理功能丧失,晚期糖基化终末产物经肾脏的排泄明显减少,导致晚期糖基化终末产物在体内大量蓄积。相关研究表明糖尿病患者体内的晚期糖基化终末产物的水平明显高于正常人群,同时慢性肾衰竭合并糖尿病的患者体内晚期糖基化终末产物的水平高于糖尿病组[9-13]。晚期糖基化终末产物的增加与蓄积对血管病变的发生与发展有着重要的影响,与血管并发症的风险相关[14-17]。在慢性肾衰竭合并糖尿病患者的粥样硬化斑块中发现了AGEs的成分,提示AGEs参与动脉粥样硬化的发生与发展,同时AGEs可作为患者动脉粥样硬化的独立预测指标,且与动脉硬化的程度相关[18]。目前关于AGEs对动静脉内瘘术后狭窄的影响方面文献较少,两者之间的关系尚不明确,因此设计此研究旨在观察 AGEs水平对动静脉内瘘术后狭窄的影响。
1. 资料和方法
1.1. 研究对象
选取2022年2~6月在桂林医学院附属医院肾内科行首次标准自体动静脉内瘘术的患者94例,依据术后2个月内是否狭窄分为狭窄组和非狭窄组,所有受试者均进行详细的病史采集及分析。所有入选患者签署知情同意书。此研究已得到本单位医学伦理委员会批准(伦理批号:2021YJSLL-52)。纳入标准:年龄>18岁;2022年2~6月在我科首次行标准AVF手术的慢性肾衰竭患者;AVF由独立完成100例以上手术工作量,且具有3年以上动静脉内瘘手术经验的2位医师建立;手术方式采用腕部头静脉-桡动脉端侧吻合;术前术肢静脉内径≥1.5 mm(束臂后);吻合口长度为6~8 mm,使用7-0血管缝线,使用连续外翻缝合方式进行缝合;术后在我院规律随诊血透患者;术前、术后的术肢血管超声评估均由我院超声医学科有丰富血管超声经验的2位医师完成;入院经血糖测定、糖耐量试验等,随机血糖≥11.1 mmol/L、或空腹血糖≥7.1 mmol/L、或糖耐量实验餐后2 h血糖≥11.1 mmol/L,符合以上血糖指标其中之一,可确诊糖尿病;既往确诊糖尿病,正服用降糖药物或接受胰岛素治疗;在未使用降压药的情况下诊室血压≥140/90 mmHg、或家庭血压≥135/85 mmHg、或24 h动态血压≥130/80 mmHg,白天血压≥135/85 mmHg,夜间血压≥120/70 mmHg,符合以上血压指标其中之一,可确诊高血压病;既往确诊高血压病,正服用降压药物治疗;血清总胆固醇(TC)≥6.20 mmol/L(240 mg/dL)和/或血清甘油三酯(TG)≥2.26 mmol/L(200 mg/dL),符合以上血脂指标其中之一,可确诊高脂血症;既往确诊高脂血症,正服用降脂药物治疗。自愿参与研究并签署知情同意书。排除标准:年龄≤18岁;重建术、转位术、球囊扩张术等非首次行标准 AVF 术患者;非腕部头静脉-桡动脉内瘘及端-端、侧-侧吻合方式者;四肢近端或中心静脉存在狭窄、血栓或因邻近病变影响静脉回流;合并恶性肿瘤、血液病、急性感染、血流动力学不稳定者;有血栓栓塞性疾病史的患者;精神异常无法配合者;临床资料不完整、不愿意接受此研究的患者;无法按计划回院复查内瘘情况,或者在观察期间内因其他原因无法继续试验者。
1.2. 研究方法
1.2.1. 资料收集
收集各组患者术前住院的一般资料:年龄、性别、是否有高血压病、高脂血症、糖尿病、吸烟及疾病家族史;收集各组患者术前住院次日的临床指标:血红蛋白、白细胞计数、红细胞计数、红细胞压积、血小板计数、中性粒细胞绝对值、淋巴细胞绝对值、白蛋白、钙、磷、尿素氮、肌酐、尿酸、凝血酶原时间、活化部分凝血活酶时间、纤维蛋白原、D-二聚体、全段甲状旁腺素、血清总胆固醇、甘油三酯、高密度脂蛋白、低密度脂蛋白、载脂蛋白A、载脂蛋白B、脂蛋白a,计算中性粒细胞/淋巴细胞比值(NLR)、血小板/淋巴细胞比值(PLR),运用MDRD公式计算肾小球滤过率(eGFR),所有指标均由我院检验科检测;收集各组患者造瘘前术肢血管超声:术前术肢桡动脉内径、头静脉内径。
1.2.2. 血清AGEs的测定
所有入组患者于透析前采集清晨空腹肘正中静脉血3 mL,本研究中所用采血管均不添加任何抗凝剂,采取血样后室温下静置120 min,而后用低温4 ℃离心机以1000 g的速度离心15 min,将分离出的上清液放入EP管,采用ELISA方法检测血清样本AGEs水平,试剂盒(CUSABIO),检测方法严格按照试剂盒说明书进行。
1.2.3. 使用ELISA检测血清样本AGEs水平
1.2.3.1. 制备标准品
⑴将标准品加入1 mL样本稀释液溶解,彻底且轻柔地混匀,得到标准品S7,放置备用,在临用前15 min内配妥(图1);⑵于7个1.5 mL离心管中各加入250 µL样本稀释液,编号S0~S6,从S7吸取250 µL标准品到S6,充分混匀。从S6中吸取250 µL到S5,充分混匀。以此类推进行标准品的倍比稀释。S0为样本稀释液(表1)。
图1.

AGEs标准样品的稀释系列
Fig.1 Dilution series of standard AGEs samples.
表 1.
标准品浓度
Tab.1 Concentration of standard AGEs samples
| No | S7 | S6 | S5 | S4 | S3 | S2 | S1 | S0 |
|---|---|---|---|---|---|---|---|---|
| µg/mL | 50 | 25 | 12.5 | 6.25 | 3.12 | 1.56 | 0.78 | 0 |
1.2.3.2. 制备洗涤工作液
用240 mL去离子水与10 mL浓洗涤液彻底而轻柔地混匀,制得250 mL洗涤工作液。
1.2.3.3. 制备生物素标记抗体工作液
用10 µL生物素标记抗体与 990 µL生物素标记抗体稀释液彻底而轻柔地混匀,制得1000 µL生物素标记抗体工作液。
1.2.3.4. 制备辣根过氧化物酶标记亲和素工作液
用10 µL辣根过氧化物酶标记亲和素加990 µL辣根过氧化物酶标记亲和素稀释液彻底而轻柔地混匀,制得1000 µL辣根过氧化物酶标记亲和素工作液。
1.2.3.5. 检测流程
使用前将所有材料和准备好的试剂移至室温(18~25℃)平衡。加样:设置标准品孔、待测样本孔,分别加标准品或待测样本100 µL/孔,10 min内完成加样,置于恒温箱中以37 ℃温育2 h。弃去孔内液体,加生物素标记抗体工作液100 µL/孔,10 min内完成,置于恒温箱中以37 ℃温育1 h。弃去孔内液体,注入洗涤工作液200 µL/孔,浸泡2 min,然后甩干,重复此过程3次。加辣根过氧化物酶标记亲和素工作液100 µL/孔,10 min内完成,置于恒温箱中以37 ℃温育1 h。弃去孔内液体,注入洗涤工作液200 µL/孔,浸泡2 min,然后甩干,重复此过程5次。依序加入底物溶液90 µL/孔,37 ℃避光显色30 min。依序加入终止溶液50 µL/孔,终止液与底物溶液的加入顺序同样,孔中的颜色应从蓝色变为黄色,终止反应。在反应终止后5min内依序测量各孔的吸光度A450 nm 值。
1.2.4. 计算生物标志物的浓度
以标准品的浓度为纵坐标,A450 nm 值为横坐标,用绘图软件画出标准曲线,在标准曲线上插入样品 A450 nm 值,得出样品浓度,乘以稀释倍数,即为样品的实际浓度,AGEs表示为µg/mL。
1.3. 对AVF狭窄的判定
依据患者造瘘后2月复查超声检查报告,我院超声医学科对动静脉内瘘狭窄的参考标准[19]:吻合口狭窄:吻合口处收缩期峰值流速(PSV)与上游 2 cm处动脉 PSV的比值≥3.0;肱动脉及流出道动脉现高阻动脉血流频谱;吻合口内径<2.5 mm且血流异常。静脉段狭窄:静脉狭窄处内径<1.8 mm,多节段或较长节段静脉狭窄处内径<2 mm;静脉狭窄段与狭窄以近段 PSV比值≥4.0;肱动脉血流量<500 mL/min或动态降低25%,RI>0.70;吻合口以远桡动脉血流方向:正向,血流频谱无盗血现象;肘正中静脉处穿静脉血流方向:恢复为由浅静脉流向深静脉。吻合口或静脉段管腔闭塞无血流信号。
1.4. 统计学分析
应用IBM SPSS Statistic 26.0进行统计分析,对所有数据进行正态性检验。符合正态分布的计量资料用均数±标准差表示,非正态分布的计量资料用中位数 (四分位间距)表示,计数资料以n(%)表示。正态分布的两组间计量资料比较采用独立样本t检验,非正态分布的计量资料比较采用秩和检验,计数资料组间比较采用χ2检验。通过正态性检验,所选用的指标为非正态分布,则采用Spearman相关性分析方法分析AGEs与各临床指标的相关性。采用Logistic 回归分析法分析动静脉内瘘狭窄的独立危险因素,采用受试者工作特征(ROC)曲线分析AGEs临床风险指标预测动静脉内瘘术后狭窄的灵敏度和特异度。以P<0.05为差异有统计学意义。
2. 结果
2.1. 狭窄组与非狭窄组一般资料比较
本研究共纳入94例行首次标准AVF的慢性肾衰竭患者,通过术后2月复查彩超对动静脉内瘘狭窄情况进行评估,依据狭窄情况分为狭窄组及非狭窄组。其中狭窄组34例,男性19人(55.88%),女性15人(44.12%),中位年龄为58(13)岁。非狭窄组60例,男性36人(60.00%),女性24人(40.00%),中位年龄为 54(13)岁。狭窄组的糖尿病与非狭窄组比较差异有统计学意义(P<0.001),而两组在性别、年龄、高血脂、高血压、吸烟史的差异无统计学意义(P>0.05,表2)。
表2.
狭窄组与非狭窄组患者AVF 术前一般资料的比较
Tab.2 Comparison of preoperative general data of patients with and without postoperative arteriovenous fistula (AVF) stenosis
| Variables | Stenosis group (n=34) | Non-stenosis group (n=60) | x2 /Z/t | P |
|---|---|---|---|---|
| Age (year, Mean±SD) | 58±13 | 54±13 | 1.340 | 0.183 |
| Gender (male/female) [n (%)] | 19/15 (55.88) | 36/24 (60.00) | 0.152 | 0.697 |
| Hyperlipemia [n (%)] | 10 (29.41) | 10 (16.67) | 2.105 | 0.147 |
| Hypertension [n (%)] | 28 (82.35) | 55 (91.67) | 1.822 | 0.177 |
| Smoking history [n (%)] | 5 (14.71) | 12 (20.00) | 0.411 | 0.522 |
| Diabetes [n (%)] | 18 (52.94) | 5 (8.33) | 23.367 | <0.001 |
Measurement data of normal distribution are presented as Mean±SD; Non-normally distributed measures are presented as median (interquartile range).
2.2. 狭窄组与非狭窄组临床资料比较
狭窄组的血小板、低密度脂蛋白、活化部分凝血活酶时间与非狭窄组相比的差异具有统计学意义(P<0.05),其余差异无统计学意义(P>0.05,表3)。
表3.
狭窄组与非狭窄组患者AVF术前临床资料的比较
Tab.3 Comparison of preoperative clinical data of patients with and without postoperative AVF stenosis
| Variables | Stenosis group (n=34) | Non-stenosis group (n=60) | t/Z | P |
|---|---|---|---|---|
| RBC (1012/L) | 2.87 (2.55, 3.13) | 2.85±0.67 | -0.024 | 0.981 |
| WBC (109/L) | 8.06 (5.89, 9.50) | 7.15 (5.75, 9.07) | -1.137 | 0.256 |
| Hb (g/L) | 80.83±17.54 | 80.29±17.37 | -0.144 | 0.886 |
| PLT (109/L) | 259.24±93.72 | 190.50 (166.25, 239.75) | -2.526 | <0.05 |
| NEUT (109/L) | 5.19 (4.14, 7.36) | 5.01 (3.91, 6.55) | -0.952 | 0.341 |
| LY (109/L) | 1.27 (0.94, 1.72) | 1.21 (0.81, 1.51) | -1.003 | 0.316 |
| NLR | 4.15 (2.91, 5.50) | 3.81 (2.69, 6.31) | -0.362 | 0.717 |
| PLR | 212.40±91.31 | 172.60 (117.48, 231.73) | -1.180 | 0.238 |
| Alb (g/L) | 37.40 (33.78, 40.50) | 37.65 (34.40, 39.68) | -0.354 | 0.723 |
| TC (mmol/L)) | 4.31±1.07 | 3.94±1.05 | 1.642 | 0.104 |
| TG (mmol/L) | 1.11 (0.85, 1.87) | 1.16 (0.80, 1.50) | -0.390 | 0.697 |
| HDL-C (mmol/L) | 0.94 (0.73, 1.23) | 1.08±0.33 | -1.047 | 0.295 |
| LDL-C (mmol/L) | 2.52±0.74 | 1.08±0.33 | 13.020 | <0.01 |
| ApoA (mmol/L) | 1.08 (1.02, 1.24) | 1.18±0.21 | -1.316 | 0.188 |
| ApoB (mmol/L) | 0.80 (0.68, 0.96) | 0.73±0.18 | -1.909 | 0.053 |
| Lp(a) (mmol/L) | 30.00 (18.03, 79.08) | 31.50 (16.43, 57.50) | -0.657 | 0.511 |
| Scr (μmol/L) | 818.65±304.00 | 872.08±271.07 | -0.879 | 0.382 |
| eGFR (mL/min/ 1.73m2) | 6.03 (5.37, 8.58) | 6.26 (5.03, 7.82) | -0.130 | 0.897 |
| UA (μmol/L) | 528.34±158.53 | 512.43±128.45 | 0.529 | 0.598 |
| iPTH (pmol/L) | 21.04 (16.23, 28.44) | 24.33 (17.03, 31.20) | -1.007 | 0.314 |
| Ca (mmol/L) | 1.83±0.20 | 1.98±0.29 | -1.927 | 0.057 |
| P (mmol/L) | 2.01 (1.64, 2.57) | 2.07±0.53 | -0.016 | 0.987 |
| HCT (%) | 0.25±0.54 | 0.25±0.55 | -0.377 | 0.707 |
| PT (s) | 11.85 (11.20, 13.10) | 12.00 (11.15, 12.50) | -0.555 | 0.579 |
| APTT (s) | 29.95 (27.50, 33.70) | 28.50 (25.30, 31.30) | -2.038 | <0.05 |
| FIB (g/L) | 4.30±1.29 | 3.56 (3.19, 4.41) | -1.897 | 0.058 |
| D-dimer (μg/mL) | 1.95 (0.57, 3.04) | 0.87 (0.43, 2.80) | -1.436 | 0.151 |
| BUN (mmol/L) | 30.02±14.38 | 29.17±8.55 | 0.362 | 0.719 |
Measurement data of normal distribution are expressed as Mean±SD, and the non-normally distributed measures are presented as median (interquartile range). RBC: Red blood cells; WBC: White blood cells; Hb: Hemoglobin; PLT: Platelets; NEUT: Neutrophilic granulocytes; LY: Lymphocytes; NLR: Neutrophils to Lymphocytes ratio; PLR: Platele to lymphocyte ratio; Alb: Albumin; TC: Total cholesterol; TG: Triglyceride; HDL-C: High-density lipoprotein cholestero; LDL-C: Low-density lipoprotein cholesterol; ApoA: Apolipoprotein A; ApoB: Apolipoprotein B; Lp(a): Lipoprotein a; Scr: Serum creatinine; eGFR: estimated glomerular filtration rate; BUN: Blood Urea Nitrogen; UA: Uric acid; iPTH: Intact parathyroid hormone; Ca: Calcium; P: Phosphorus; HCT: Hematokrit; PT: Prothrombin time; APTT: Activated partial thromboplastin time; FIB: Fibrinogen.
2.3. 狭窄组与非狭窄组血清AGEs水平比较
狭窄组的AGEs水平明显高于非狭窄组[8.88(7.80)µg/mL vs 5.27(1.91)µg/mL],差异具有统计学意义(P<0.01)。
2.4. 血清AGEs水平与各临床指标的相关性分析
采用Spearman相关分析方法分别分析AGEs与各临床指标的相关性,结果提示AGEs水平与磷呈负相关(P<0.05)。其余差异无统计学意义(P>0.05,表4)。
表4.
血清AGEs与各临床指标的相关性分析
Tab.4 Correlation of serum AGEs with the clinical parameters of the patients
| Variables | r | P |
|---|---|---|
| Age | 0.148 | 0.155 |
| RBC | 0.005 | 0.962 |
| WBC | -0.097 | 0.352 |
| Hb | 0.104 | 0.319 |
| PLT | 0.020 | 0.851 |
| NEUT | -0.100 | 0.335 |
| LY | 0.080 | 0.445 |
| NLR | -0.077 | 0.459 |
| PLR | -0.069 | 0.509 |
| Alb | -0.040 | 0.699 |
| TC | 0.086 | 0.409 |
| TG | 0.038 | 0.719 |
| HDL-C | 0.096 | 0.355 |
| LDL-C | 0.068 | 0.512 |
| ApoA | -0.034 | 0.747 |
| ApoB | 0.084 | 0.421 |
| Lp(a) | -0.031 | 0.770 |
| Scr | -0.161 | 0.120 |
| eGFR | 0.031 | 0.768 |
| BUN | -0.141 | 0.175 |
| UA | -0.071 | 0.495 |
| iPTH | -0.080 | 0.443 |
| Ca | 0.010 | 0.920 |
| P | -0.203 | <0.05 |
| HCT | 0.057 | 0.587 |
| PT | -0.151 | 0.146 |
| APTT | -0.073 | 0.482 |
| FIB | -0.054 | 0.608 |
| D-dimer | 0.192 | 0.063 |
| Arterial diameter | -0.178 | 0.086 |
| Venous diameter | 0.115 | 0.269 |
2.5. 动静脉内瘘术后狭窄的危险因素
以动静脉内瘘术后2月内是否出现狭窄作为因变量,将各因素逐一纳入未校正的Logistic回归模型进行单因素分析(表5),结果显示:AGEs、血小板、纤维蛋白原为提示动静脉内瘘术后狭窄的危险因素。将单因素分析中有意义的AGEs、血小板、纤维蛋白原纳入自变量,进行多因素Logistic回归分析,经分析可知,在建立的此多因素Logistic回归模型中,AGEs是动静脉内瘘术后狭窄的独立危险因素(表6)。
表5.
预测动静脉内瘘狭窄的单因素Logistic回归分析
Tab.5 Univariate Logistic regression analysis for predicting arteriovenous fistula stenosis
| Variables | B | SE | P | OR | 95% CI | |
|---|---|---|---|---|---|---|
| Lower limit | Upper limit | |||||
| AGEs | 0.220 | 0.065 | 0.001 | 1.247 | 1.097 | 1.416 |
| Age | 0.022 | 0.017 | 0.183 | 1.023 | 0.989 | 1.057 |
| Gender | -0.169 | 0.434 | 0.697 | 0.844 | 0.360 | 1.979 |
| Hypertension | -0.857 | 0.649 | 0.186 | 0.424 | 0.119 | 1.512 |
| Hyperlipemia | 0.734 | 0.512 | 0.151 | 2.083 | 0.764 | 5.678 |
| Smoking history | -0.372 | 0.582 | 0.523 | 0.690 | 0.220 | 2.158 |
| RBC | 0.019 | 0.331 | 0.954 | 1.019 | 0.533 | 1.951 |
| WBC | 0.092 | 0.072 | 0.201 | 1.096 | 0.952 | 1.262 |
| Hb | -0.002 | 0.012 | 0.885 | 0.998 | 0.974 | 1.023 |
| PLT | 0.006 | 0.003 | 0.014* | 1.006 | 1.001 | 1.012 |
| NEUT | 0.074 | 0.078 | 0.343 | 1.077 | 0.924 | 1.255 |
| LY | 0.301 | 0.354 | 0.396 | 1.351 | 0.675 | 2.707 |
| NLR | -0.017 | 0.041 | 0.683 | 0.983 | 0.908 | 1.065 |
| PLR | 0.001 | 0.002 | 0.485 | 1.001 | 0.997 | 1.006 |
| Alb | -0.029 | 0.041 | 0.480 | 0.971 | 0.895 | 1.053 |
| TC | 0.333 | 0.206 | 0.107 | 1.395 | 0.931 | 2.090 |
| TG | 0.310 | 0.230 | 0.179 | 1.363 | 0.868 | 2.142 |
| HDL-C | -0.236 | 0.621 | 0.703 | 0.789 | 0.234 | 2.666 |
| LDL-C | 0.581 | 0.314 | 0.064 | 1.788 | 0.966 | 3.310 |
| ApoA | -0.800 | 1.066 | 0.453 | 0.449 | 0.056 | 3.628 |
| ApoB | 2.166 | 1.140 | 0.057 | 8.725 | 0.934 | 81.482 |
| Lp (a) | 0.006 | 0.005 | 0.193 | 1.006 | 0.997 | 1.015 |
| Scr | -0.001 | 0.001 | 0.379 | 0.999 | 0.998 | 1.001 |
| eGFR | 0.037 | 0.085 | 0.668 | 1.037 | 0.878 | 1.226 |
| BUN | 0.007 | 0.020 | 0.715 | 1.007 | 0.969 | 1.047 |
| UA | 0.001 | 0.002 | 0.594 | 1.001 | 0.998 | 1.004 |
| iPTH | -0.006 | 0.016 | 0.698 | 0.994 | 0.964 | 1.025 |
| Ca | -1.879 | 1.010 | 0.063 | 0.153 | 0.021 | 1.106 |
| P | 0.266 | 0.331 | 0.421 | 1.305 | 0.682 | 2.484 |
| HCT | -1.529 | 4.016 | 0.703 | 0.217 | 0.000 | 567.825 |
| PT | 0.066 | 0.090 | 0.464 | 1.068 | 0.895 | 1.274 |
| APTT | 0.055 | 0.030 | 0.071 | 1.056 | 0.995 | 1.121 |
| FIB | 0.388 | 0.194 | 0.045* | 1.474 | 1.008 | 2.156 |
| D-dimer | 0.081 | 0.117 | 0.488 | 1.085 | 0.862 | 1.364 |
| Arterial diameter | 0.290 | 0.461 | 0.530 | 1.336 | 0.541 | 3.300 |
| Venous diameter | 0.081 | 0.355 | 0.819 | 1.085 | 0.541 | 2.174 |
表6.
预测动静脉内瘘狭窄的多因素Logistic回归分析
Tab.6 Multivariate Logistic regression analysis of the factors for predicting arteriovenous fistula stenosis
| Variables | B | SE | P | OR | 95% CI | |
|---|---|---|---|---|---|---|
| Lower limit | Upper limit | |||||
| AGEs | 0.224 | 0.068 | 0.0009 | 1.251 | 1.096 | 1.423 |
| PLT | 0.005 | 0.003 | 0.112 | 1.005 | 0.999 | 1.011 |
| FIB | 0.221 | 0.236 | 0.347 | 1.248 | 0.786 | 1.980 |
AGEs:Advanced Glycation End Products. PLT:Platelets. FIB:Fibrinogen.
2.6. AGEs对动静脉内瘘术后狭窄的诊断价值
受试者工作特征(ROC)曲线分析提示:AGEs预测自体动静脉内瘘狭窄曲线下面积为0.677(P<0.01, 95% CI: 0.572-0.770),最佳截断值为8.43 µg/mL,特异性为90.00%,灵敏度为52.94%;AGEs联合纤维蛋白原预测自体动静脉内瘘狭窄曲线下面积为0.763(P<0.001, 95% CI:0.664-0.844),最佳截断值为0.30,特异性为73.33%,灵敏度为70.59%。两组间比较,AGEs联合纤维蛋白原风险模型的ROC-AUC最大,预测效能明显高于单独的AGEs(图2)。
图2.

生物标记物预测动静脉内瘘狭窄的 ROC曲线
Fig.2 ROC curve of the biomarkers for predicting arteriovenous fistula stenosis.
3. 讨论
AVF是尿毒症患者血液透析的“生命线”,作为MHD患者主要的血管通路,与其他通路相比,它使用时间更长、并发症更少,是目前最有效、最简便、最理想的血管通路[20]。然而受ESRD患者血管条件、内环境紊乱等因素影响,AVF发生功能障碍、内瘘闭塞等血管通路并发症的概率越来越高,影响MHD患者的透析效果,进而影响患者生活质量。因此积极寻找内瘘狭窄预测因子,预测自体动静脉内瘘狭窄发生风险,提前有效的干预,是降低血管通路后续并发症和及时处理的关键所在。
研究表明伴有糖尿病的慢性肾衰竭患者的AVF 更容易发生狭窄,血管狭窄发生率均高于非糖尿病患者[21-24]。常常是由于糖尿病患者的血糖情况控制不佳,导致机体长期处于四高状态,即:高凝状态,主要表现为纤维蛋白溶解酶活性减低;高聚状态,主要因血沉加快,低切变速度下全血黏度升高;高浓度状态,主要表现为血浆纤维蛋白原增加;高黏状态,主要表现为全血黏度升高[25]。并且这“4种状态”使体内血流状态出现明显异常,血液在体内循环中易形成网状结构,易于形成血栓倾向,进而导致血管并发症发生。Neves等[26]研究表示糖尿病是自体动静脉内瘘狭窄的重要危险因素,其血管病变的相关机制与AVF术后狭窄相符,意味着糖尿病的存在将很大程度上增加AVF术后狭窄的风险。本研究纳入的94例患者中,狭窄组与非狭窄组中糖尿病患者所占比分别为52.94%和8.33%,狭窄组的糖尿病患者例数明显高于非狭窄组,再次证实伴有糖尿病的患者发生血管通路狭窄的概率明显高于对照组,是AVF术后狭窄的重要危险因素,与既往的研究结果一致。因此伴有糖尿病的慢性肾衰竭患者应该积极控制血糖,维持血糖稳定,避免长期高血糖状态对血管内皮细胞造成持续性的损伤,增加AVF狭窄的风险。
晚期糖基化终末产物是一种非酶糖基化产物,其结构极其复杂,与机体很多病理生理过程密切相关,如参与尿毒症、糖尿病慢性并发症、阿尔兹海默症、动脉粥样硬化等疾病的发生与发展[6,7]。相关研究表明,高血糖是AGEs水平升高的直接原因,但血糖下降至正常水平时,组织AGEs水平和AGEs效应并不能在短时间内恢复正常,这种现象在糖尿病患者中尤为明显[27]。本研究结果提示,狭窄组患者的血清AGEs水平明显高于非狭窄组,提示AGEs水平与ESRD患者发生动静脉内瘘狭窄有关。且通过比较两组间糖尿病患者的例数发现,狭窄组的糖尿病患者数量明显高于非狭窄组,提示血糖水平与AGEs水平可能存在一定的联系。多因素Logistic回归分析提示AGEs为动静脉内瘘狭窄的独立危险因素,提示血清AGEs水平升高,ESRD患者动静脉内瘘术后狭窄的风险增加。有研究表明[28],在冠心病并发糖尿病患者中发现,支架内再狭窄组患者血清AGEs水平显著高于非再狭窄组,血清AGEs水平对冠心病并发糖尿病患者支架内再狭窄的发生具有良好的诊断价值,并且血清AGEs水平升高是冠心病并发糖尿病患者支架内再狭窄的独立危险因素,与本研究结果类似。通过ROC曲线分析,AGEs预测AVF狭窄曲线下面积为0.677,通过联合纤维蛋白原,临床风险预测模型的ROC-AUC提高到0.763,说明此模型有一定的预测能力。AGEs与纤维蛋白原分别代表了代谢紊乱和凝血/炎症状态的关键生物标志物,在病理过程中存在交叉作用:AGEs通过氧化应激促进内皮功能障碍,而纤维蛋白原通过增强血小板聚集和血液黏稠度加剧血栓形成,两者联合可共同放大血管损伤和器官纤维化风险[29,30]。AGEs与纤维蛋白原联合预测模型通过整合代谢毒性、凝血和炎症信号,显著提高了高风险患者的风险评估能力,尤其在糖尿病、慢性肾脏病和心血管疾病中具有重要临床应用价值。
目前AGEs引起动静脉内瘘狭窄的机制尚不明确,考虑与以下两种机制相关:(1)非RAGE依赖机制:糖化后的蛋白质和脂蛋白可通过改变分子构象、酶的活性以及减少受体识别后的清除和干扰等方面,来改变其基本功能[31]。在慢性肾衰竭和糖尿病患者中,普遍存在血脂代谢紊乱的现象,糖基化终产物修饰的低密度脂蛋白造成该类患者血脂代谢紊乱的主要原因之一[32]。有研究表明LDL-C水平的升高是自体动静脉内瘘狭窄的重要危险因素[33]。高水平的LDL-C与动静脉内瘘狭窄存在密切的关系[34]。本研究结果显示狭窄组的LDL-C水平明显高于非狭窄组,LDL-C水平的升高与自体动静脉内瘘狭窄相关。AGEs可通过糖化反应改变低密度脂蛋白的分子结构,使其变成糖基化终产物修饰的低密度脂蛋白(AGE-LDL);AGEs还可通过糖化反应使LDL受体介导的摄取功能受损,降低LDL的清除率,加快巨噬细胞对AGE-LDL的摄取增加,增加空泡细胞的形成,进而促进了血管病变的发生与发展[35]。虽然本研究中未能体现AGEs与低密度脂蛋白的相关性,但通过比较两组间相关数据可知,狭窄组的LDL-C、AGEs水平均明显高于非狭窄组。表明了AGEs可通过非RAGE依赖机制参与动静脉内瘘狭窄的发生与发展。(2)RAGE依赖机制:多种细胞表面均可发现RAGE的存在,如脂肪细胞、巨噬细胞、内皮细胞、血管平滑肌细胞等[36]。RAGE参与和介导了AGEs大部分的生物效应[37,38]。AGEs-RAGE轴不仅可以激活细胞内级联,还能通过RAGE的信号转导激活了中心转录因子、环磷酸腺苷反应元件结合蛋白等,促进氧化应激/炎性反应、诱发凋亡、促进血栓形成等[39]。在糖尿病及存在动脉粥样硬化病变的患者中,RAGE的表达水平较正常人群是升高的,提示了AGEs在这些疾病中介导的病理效应是增强的[40]。血管内皮细胞表面AGEs与RAGE相互作用,增加血管壁的通透性,破坏内皮细胞的屏障功能;同时,它还能够使相关黏附分子的表达增加,激活单核细胞,促进泡沫细胞的生成[41]。血小板是血栓形成和动脉粥样硬化等血管性疾病的关键因素[42]。本研究发现狭窄组的血小板计数高于非狭窄组,血小板升高与术后狭窄的风险相关,是自体动静脉内瘘术后狭窄的危险因素,且其水平越高,狭窄的风险越高。AGEs与血小板表面的RAGE结合,在很大程度使血小板活化,活化后的血小板可表达CD62,这是一种存在于活化的内皮细胞和血小板表面的黏附因子,能够黏附在内皮细胞上[43]。AGEs能够极大程度增加CD62的表达水平,导致易发生血管系统疾病。相关研究发现AVF术后应用抗血小板药物可明显降低自体动静脉内瘘术后血栓的发生率,降低其狭窄的风险[44]。单核细胞的表面的AGEs与RAGE相互作用,能够诱导白细胞介素、肿瘤坏死因子α等炎症介质的产生,引起炎症反应,白细胞被激活,能够不断的召集血小板,形成一种聚合物,是血栓形成过程中最为关键的一环[45]。相关研究[11]表明AGEs与中性粒细胞和单核细胞计数呈正相关。血管平滑肌上表面的AGEs与RAGE结合,能够影响生长因子或细胞因子,促进细胞的增值[46]。血管内皮损伤后,机体做出应答,新的血管内膜形成(比如平滑肌细胞增殖及迁移),但是,它可能与动脉粥样硬化和动脉血运重建过程中动脉狭窄和血栓形成的发生有关。
综上所述,血清AGEs是自体动静脉内瘘术后狭窄的独立危险因子,对终末期肾病患者自体动静脉内瘘术后狭窄具有一定的诊断价值。但因本研究是小样本、单中心研究,没有同期其他中心的研究结果进行验证,所以仍需要更大样本量的多中心研究对本结果进行验证。
基金资助
国家自然科学基金(81960679)
Supported by National Natural Science Foundation of China (81960679).
利益冲突声明
The authors declare no competinginterests.。
参考文献
- 1. Voto C, Panetta T. Salvage of suboptimal or occluded arteriovenous fistulas using a 4 French system from the radial artery for initial balloon angioplasty maturations[J]. Cureus, 2021, 13(2): e13446. doi: 10.7759/cureus.13446 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 2. 金其庄, 王玉柱, 叶朝阳, 等. 中国血液透析用血管通路专家共识(第2版)[J]. 中国血液净化, 2019, 18(6): 365-81. [Google Scholar]
- 3. Wen MW, Li Z, Li J, et al. Risk factors for primary arteriovenous fistula dysfunction in hemodialysis patients: a retrospective survival analysis in multiple medical centers[J]. Blood Purif, 2019, 48(3): 276-82. doi: 10.1159/000500045 [DOI] [PubMed] [Google Scholar]
- 4. Roetker NS, Guo HF, Ramey DR, et al. Hemodialysis access type and access patency loss: an observational cohort study[J]. Kidney Med, 2022, 5(1): 100567. doi: 10.1016/j.xkme.2022.100567 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 5. Ibrahim Eissa HA, Zaida N, Abu-Gruidah H, et al. Percutaneous transluminal angioplasty as a treatment of stenosis of arteriovenous fistula for hemodialysis[J]. Menoufia Med J, 2021, 34(2): 696. doi: 10.4103/mmj.mmj_364_20 [DOI] [Google Scholar]
- 6. Arshi B, Chen JL, Ikram MA, et al. Advanced glycation end-products, cardiac function and heart failure in the general popul-ation: The Rotterdam Study[J]. Diabetologia, 2023, 66(3): 472-81. doi: 10.1007/s00125-022-05821-3 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 7. Kato S, Sugawa H, Tabe K, et al. Rapid pretreatment for multi-sample analysis of advanced glycation end products and their role in nephropathy[J]. J Clin Biochem Nutr, 2022, 70(3): 256-61. doi: 10.3164/jcbn.21-175 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 8. Du CP, Whiddett RO, Buckle I, et al. Advanced glycation end products and inflammation in type 1 diabetes development[J]. Cells, 2022, 11(21): 3503. doi: 10.3390/cells11213503 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 9. Khanam A, Ahmad S, Husain A. A perspective on the impact of advanced glycation end products in the progression of diabetic nephropathy[J]. Curr Protein Pept Sci, 2023, 24(1): 2-6. doi: 10.2174/1389203724666221108120715 [DOI] [PubMed] [Google Scholar]
- 10. Ji XL, Yin M, Deng C, et al. Hemoglobin glycation index among adults with type 1 diabetes: Association with double diabetes features[J]. World J Diabetes, 2025, 16(4): 100917. doi: 10.4239/wjd.v16.i4.100917 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 11. Groenen AG, Halmos B, van Zeventer IA, et al. Skin autofluorescence, a measure for accumulation of advanced glycation end products, positively associates with blood neutrophil and monocyte counts in the general population, and particularly in men with prediabetes[J]. Atherosclerosis, 2024, 395: 117609. doi: 10.1016/j.atherosclerosis.2024.117609 [DOI] [PubMed] [Google Scholar]
- 12. Xue LP, Zhang Y, Zhang Q. The relationship between advanced glycation end products, metabolic metrics, HbA1c, and diabetic nephropathy[J]. Front Endocrinol (Lausanne), 2025, 16: 1468737. doi: 10.3389/fendo.2025.1468737 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 13. Parwani K, Mandal P. Role of advanced glycation end products and insulin resistance in diabetic nephropathy[J]. Arch Physiol Biochem, 2023, 129(1): 95-107. doi: 10.1080/13813455.2020.1797106 [DOI] [PubMed] [Google Scholar]
- 14. Diallo AM, Jaisson S, Barriquand R, et al. Association between the tissue and circulating advanced glycation end-products and the micro- and macrovascular complications in type 1 diabetes: the DIABAGE study[J]. Diabetes Ther, 2022, 13(8): 1531-46. doi: 10.1007/s13300-022-01285-1 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 15. Majchrzak C, Cougnard-Gregoire A, Le-Goff M, et al. Skin autofluorescence of Advanced Glycation End-products and mortality in older adults: The roles of chronic kidney disease and diabetes[J]. Nutr Metab Cardiovasc Dis, 2022, 32(11): 2526-33. doi: 10.1016/j.numecd.2022.08.009 [DOI] [PubMed] [Google Scholar]
- 16. Lim K, Kalim S. The role of nonenzymatic post-translational protein modifications in uremic vascular calcification[J]. Adv Chronic Kidney Dis, 2019, 26(6): 427-36. doi: 10.1053/j.ackd.2019.10.001 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 17. Steenbeke M, Speeckaert R, Desmedt S, et al. The role of advanced glycation end products and its soluble receptor in kidney diseases[J]. Int J Mol Sci, 2022, 23(7): 3439. doi: 10.3390/ijms23073439 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 18. Gutierrez-Mariscal FM, Lopez-Moreno A, Torres-Peña JD, et al. Modulation of circulating levels of advanced glycation end products and its impact on intima-media thickness of both common carotid arteries: CORDIOPREV randomised controlled trial[J]. Cardiovasc Diabetol, 2024, 23(1): 361. doi: 10.1186/s12933-024-02451-4 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 19. 中国超声医学工程学会颅脑及颈部血管超声专业委员会, 国家卫健委脑卒中防治工程专家委员会血管超声专业委员会, 中国超声医学工程学会浅表器官及外周血管超声专业委员会 . 腹部及四肢动脉超声若干常见临床问题专家共识[J]. 中国超声医学杂志, 2020, 36(12): 1057-66. [Google Scholar]
- 20. Zhang LX, Zhao MH, Zuo L, et al. China kidney disease network (CK-NET) 2015 annual data report[J]. Kidney Int Suppl (2011), 2019, 9(1): e1-e81. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 21. Fuentes NES, Blanco JR, Garcia GQ, et al. A prospective study of factors associated with successful maturation of arteriovenous fistulas for hemodialysis[J]. J Ultrason, 2024, 24(98): 1-7. doi: 10.15557/jou.2024.0030 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 22. Vo AT, Nguyen QNH, Le T. Effects of diabetes on the development of arteriovenous fistula during the first 6 weeks[J]. J Vasc Ultrasound, 2024, 48(4): 213-20. doi: 10.1177/15443167241298060 [DOI] [Google Scholar]
- 23. Zhao B, Wang H, Wang YZ, et al. Type 2 diabetes increase the risk of arteriovenous fistula non-maturation, mediated by postoperative vascular hemodynamics[J]. Int Urol Nephrol, 2024, 56(12): 3887-94. doi: 10.1007/s11255-024-04150-1 [DOI] [PubMed] [Google Scholar]
- 24. Wongchadakul P, Lohasammakul S, Rattanadecho P. Comparative analysis of RADAR vs. conventional techniques for AVF maturation in patients with blood viscosity and vessel elasticity-related diseases through fluid-structure interaction modeling: Anemia, hypertension, and diabetes[J]. PLoS One, 2024, 19(1): e0296631. doi: 10.1371/journal.pone.0296631 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 25. Maphumulo SC, Pretorius E. Role of circulating microparticles in type 2 diabetes mellitus: implications for pathological clotting[J]. Semin Thromb Hemost, 2022, 48(2): 188-205. doi: 10.1055/s-0041-1740150 [DOI] [PubMed] [Google Scholar]
- 26. Neves M, Outerelo C, Pereira M, et al. Predictive factors of recurrent endovascular intervention for cephalic arch stenosis after percutan-eous transluminal angioplasty[J]. J Vasc Surg, 2018, 68(3): 836-42. doi: 10.1016/j.jvs.2017.12.055 [DOI] [PubMed] [Google Scholar]
- 27. Kato S, Matsumura T, Sugawa H, et al. Correlation between serum advanced glycation end-products and vascular complications in patient with type 2 diabetes[J]. Sci Rep, 2024, 14(1): 18722. doi: 10.1038/s41598-024-69822-5 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 28. Pearce C, Islam N, Bryce R, et al. Advanced glycation end products: receptors for advanced glycation end products axis in coronary stent restenosis: a prospective study[J]. Int J Angiol, 2018, 27(4): 213-22. doi: 10.1055/s-0038-1676383 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 29. Azamian Y, Abdollahzad H, Rezaeian S, et al. The effect of synbiotic supplementation on plasma levels of advanced glycation end products and cardiovascular risk factors in hemodialysis patients: a double-blind clinical trial[J]. Food Sci Nutr, 2024, 12(9): 6864-72. doi: 10.1002/fsn3.4338 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 30. Khanam A, Alouffi S, Alyahyawi AR, et al. Generation of autoantibodies against glycated fibrinogen: role in diabetic nephropathy and retinopathy[J]. Anal Biochem, 2024, 685: 115393. doi: 10.1016/j.ab.2023.115393 [DOI] [PubMed] [Google Scholar]
- 31. Klyosova E, Azarova I, Polonikov A. A polymorphism in the gene encoding heat shock factor 1 (HSF1) increases the risk of type 2 diabetes: a pilot study supports a role for impaired protein folding in disease pathogenesis[J]. Life (Basel), 2022, 12(11): 1936. doi: 10.3390/life12111936 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 32. Dincer N, Dagel T, Afsar B, et al. The effect of chronic kidney disease on lipid metabolism[J]. Int Urol Nephrol, 2019, 51(2): 265-77. doi: 10.1007/s11255-018-2047-y [DOI] [PubMed] [Google Scholar]
- 33. Yilmaz H, Bozkurt A, Cakmak M, et al. Relationship between late arteriovenous fistula (AVF) stenosis and neutrophil-lymphocyte ratio (NLR) in chronic hemodialysis patients[J]. Ren Fail, 2014, 36(9): 1390-4. doi: 10.3109/0886022x.2014.945183 [DOI] [PubMed] [Google Scholar]
- 34. See YP, Cho Y, Pascoe EM, et al. Predictors of arteriovenous fistula failure: a Post hoc analysis of the FAVOURED study[J]. Kidney360, 2020, 1(11): 1259-69. doi: 10.34067/kid.0002732020 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 35. Yang X, Zeng JX, Xie KJ, et al. Advanced glycation end product-modified low-density lipoprotein promotes pro-osteogenic reprogramming via RAGE/NF-κB pathway and exaggerates aortic valve calcification in hamsters[J]. Mol Med, 2024, 30(1): 76. doi: 10.1186/s10020-024-00833-8 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 36. Chen X, Zhang JW. COL3A1 induces ischemic heart failure by activating AGE/RAGE pathway[J]. Signa vitae, 2022, 18(6): 45-52. [Google Scholar]
- 37. Chen JJ, Peng H, Chen CJ, et al. NAG-1/GDF15 inhibits diabetic nephropathy via inhibiting AGE/RAGE-mediated inflammation signaling pathways in C57BL/6 mice and HK-2 cells[J]. Life Sci, 2022, 311(Pt A): 121142. doi: 10.1016/j.lfs.2022.121142 [DOI] [PubMed] [Google Scholar]
- 38. Burr SD, Dorroh CC, Stewart JA. Rap1a activity elevated the impact of endogenous AGEs in diabetic collagen to stimulate increased myofibroblast transition and oxidative stress[J]. Int J Mol Sci, 2022, 23(9): 4480. doi: 10.3390/ijms23094480 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 39. Min F, Li ZR, Li YL, et al. The contribution of adiponectin to diabetic retinopathy progression: Association with the AGEs-RAGE pathway[J]. Heliyon, 2024, 10(17): e36111. doi: 10.1016/j.heliyon.2024.e36111 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 40. Stephen SB, Kulanthaivel L, Subbaraj GK. RAGE gene polymorphism with microvascular complications in diabetic patients: a meta-analysis[J]. Russ J Genet, 2025, 61(4): 473-84. doi: 10.1134/s1022795424701874 [DOI] [Google Scholar]
- 41. Yamazaki Y, Wake H, Nishinaka T, et al. Involvement of multiple scavenger receptors in advanced glycation end product-induced vessel tube formation in endothelial cells[J]. Exp Cell Res, 2021, 408(1): 112857. doi: 10.1016/j.yexcr.2021.112857 [DOI] [PubMed] [Google Scholar]
- 42. Rizzi A, Petrucci G, Sacco M, et al. Effects of low-dose rivaroxaban combined with low-dose aspirin versus low-dose aspirin alone on in vivo platelet activation, endothelial function and inflammation in type 2 diabetes patients with stable atherosclerotic disease: the RivAsa randomized, crossover study[J]. Diabetes Res Clin Pract, 2025, 224: 112244. doi: 10.1016/j.diabres.2025.112244 [DOI] [PubMed] [Google Scholar]
- 43. Arriagada-Petersen C, Fernandez P, Gomez M, et al. Effect of advanced glycation end products on platelet activation and aggregation: a comparative study of the role of glyoxal and methylglyoxal[J]. Platelets, 2021, 32(4): 507-15. doi: 10.1080/09537104.2020.1767770 [DOI] [PubMed] [Google Scholar]
- 44. Hsu YH, Yen YC, Lin YC, et al. Correction: antiplatelet agents maintain arteriovenous fistula and graft function in patients receiving hemodialysis: a nationwide case-control study[J]. PLoS One, 2019, 14(4): e0215546. doi: 10.1371/journal.pone.0215546 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 45. Jahan H, Tufail P, Shamim S, et al. 1, 2, 4-Triazine derivatives as agents for the prevention of AGE-RAGE-mediated inflammatory cascade in THP-1 monocytes: an approach to prevent inflammation-induced late diabetic complications[J]. Int Immunopharmacol, 2024, 142(Pt B): 113145. doi: 10.1016/j.intimp.2024.113145 [DOI] [PubMed] [Google Scholar]
- 46. Molinuevo MS, Cortizo AM, Sedlinsky C. Effects of advanced glycation end-products, diabetes and metformin on the osteoblastic transdifferentiation capacity of vascular smooth muscle cells: in vivo and in vitro studies[J]. J Diabetes Complications, 2023, 37(11): 108626. doi: 10.1016/j.jdiacomp.2023.108626 [DOI] [PubMed] [Google Scholar]
