Abstract
目的
通过构建斑马鱼敌草快急性中毒模型,探讨铁死亡在敌草快引起的急性肾损伤的作用及分子机制。
方法
采用肾脏标记Tg (Eco.Tshb:EGFP)和中性粒细胞标记Tg(lyz:dsRed2)的转基因斑马鱼构建急性肾损伤模型,设置空白对照组、庆大霉素阳性对照组、敌草快中毒组以及铁死亡抑制剂组,检测斑马鱼肾损伤、炎症反应以及铁死亡相关指标,采用Western blotting检测电压依赖性阴离子选择性通道蛋白1(VDAC1)和线粒体铁蛋白(FTMT)的表达水平。
结果
敌草快引起的急性肾损伤具有明显剂量效应关系,损伤程度与暴露浓度成正比,同时诱导明显的氧化应激和炎症反应。罗丹明代谢法和HE染色发现,肾小球过滤功能随着敌草快暴露浓度增加而下降(P<0.001)。免疫荧光显示,敌草快暴露后斑马鱼肾组织铁死亡标志物GPX4和FTH1的表达水平发生明显变化,而给予铁死亡抑制剂Ferrostatin-1干预后GPX4表达上调(P=0.040),FTH1表达下调(P=0.042),罗丹明B标记葡聚糖代谢率改善(P=0.024)。敌草快暴露引起VDAC1和FTMT表达水平上调(P<0.001),应用铁死亡抑制剂和VDAC1抑制剂VBIT-12后FTMT下调尤为明显。
结论
铁死亡参与敌草快致急性肾损伤的分子机制,并且VDAC1和FTMT参与其中的调控机制,可能是潜在的干预靶点。
Keywords: 敌草快, 急性肾损伤, 铁死亡, 电压依赖性阴离子选择性通道蛋白1, 线粒体铁蛋白
Abstract
Objective
To investigate the role of ferroptosis in diquat-induced acute kidney injury (AKI) and its molecular mechanisms.
Methods
Transgenic zebrafish models with Tg (Eco.Tshb:EGFP) labeling of the renal tubules and Tg (lyz:dsRed2) labeling of the neutrophils were both divided into control group, gentamicin (positive control) group, diquat poisoning group, ferroptosis inhibitor group. The indicators of kidney injury, inflammatory response, and ferroptosis were examined in the zebrafish, and the changes in expressions of voltage-dependent anion-selective channel protein 1 (VDAC1) and mitochondrial ferritin (FTMT) were detected using Western blotting.
Results
AKI induced by diquat exhibited a significant dose-effect relationship, and the severity of injury was proportional to the exposure concentration. Diquat also caused marked oxidative stress and inflammatory responses in the zebrafish models. Rhodamine metabolism assay and HE staining revealed significantly declined glomerular filtration function of the zebrafish as diquat exposure concentration increased. Immunofluorescence staining highlighted significant changes in the expressions of ferroptosis markers GPX4 and FTH1 in zebrafish renal tissues following diquat exposure. In diquat-exposed zebrafish, treatment with ferrostatin-1, a ferroptosis inhibitor, obviously upregulated GPX4 and downregulated FTH1 expressions and improved the metabolic rate of glucan labeled with rhodamine B. Diquat exposure significantly upregulated the expression of VDAC1 and FTMT in zebrafish, and the application of ferrostatin-1 and VBIT-12 (a VDAC1 inhibitor) both caused pronounced downregulation of FTMT expression.
Conclusion
Ferroptosis is a critical mechanism underlying diquat-induced AKI, in which VDAC1 and FTMT play important regulatory roles, suggesting their potential as therapeutic target for AKI caused by diquat.
Keywords: diquat, acute kidney injury, ferroptosis, voltage-dependent anion-selective channel protein 1, mitochondrial ferritin
临床上,急性敌草快中毒能够引起肾、肝和肺等多个器官功能严重损伤,是其主要的致死原因[1-3]。肾脏作为敌草快及其代谢产物主要的排泄途径和损伤靶器官[4],肾功能损伤通常最先出现并迅速进展至功能衰竭[5, 6],甚至有报道口服40 mL敌草快诱发急性肾损伤并快速进展为肾衰竭的病例[7]。深入阐明敌草快致急性肾损伤的分子机制,对于探寻有效的干预靶点、保护靶器官功能并改善患者预后具有重要的临床意义。
研究表明,敌草快通过氧化还原反应产生过量的活性氧(ROS)、活性氮等自由基[8],破坏细胞膜、蛋白质及脂质等生物大分子结构,最终引发细胞死亡[9]。且敌草快比百草枯具有更强的氧化损伤能力,通过催化脂质过氧化引发更显著的细胞毒性[10],表现出以铁死亡为突出的损伤机制[11]。敌草快能显著升高细胞内二价铁(Fe²⁺)水平,通过芬顿反应催化产生大量脂质活性氧[12, 13],可直接导致肾小管上皮细胞坏死。透射电镜扫描显示中毒后肾小管上皮细胞线粒体表现为体积缩小、双层膜结构崩解甚至消失[14],符合铁死亡的特征性表现。另一方面,通过降低运铁蛋白表达维持细胞内铁稳态被证明可有效减轻敌草快所致的氧化应激和肾小管损伤[15]。以上证据共同提示,铁死亡是敌草快致急性肾损伤的一个关键病理机制。
电压依赖性阴离子通道蛋白1(VDAC1)是VDAC蛋白家族中表达最丰富的亚型,对维持线粒体功能具有关键作用。研究发现,VDAC1的过度开放可能是触发线粒体功能障碍的关键环节,因其能够加速线粒体膜电位的崩溃,加剧活性氧生成,协同推动铁死亡进程[16]。与之呼应的是,铁死亡抑制剂Liproxstatin-1通过下调VDAC1表达并恢复谷胱甘肽过氧化物酶4(GPX4)活性来发挥线粒体保护作用[17]。以上表明VDAC1在铁死亡调控通路中具有重要作用,但其在敌草快中毒引发肾损伤过程中的作用及分子机制仍不明确,亟待深入探究。
斑马鱼因其与人类基因的高度同源性,以及透明幼鱼易于观察器官损伤等优势,是一种毒理机制研究的重要模式生物[18]。本研究拟利用斑马鱼构建急性敌草快中毒模型,探讨铁死亡在急性肾损伤中作用及调控机制,并为寻找潜在的治疗靶点、开发针对性的靶器官保护策略提供新的实验室依据。
1. 材料和方法
1.1. 实验材料
1.1.1. 实验动物
本研究选用肾小管标记Tg(Eco.Tshb:EGFP)和中性粒细胞标记Tg(lyz:dsRed2)转基因斑马鱼。斑马鱼饲养于规范化斑马鱼养殖系统中,质量控制依照国家标准GB/T 39649-2020《实验动物实验鱼质量控制》。
1.1.2. 实验试剂
敌草快(坛墨质检-标准物质中心,TMstandard);庆大霉素(上海生工生物);铁死亡抑制剂Ferrostatin-1(Fer-1,APExBio);罗丹明B标记葡聚糖[华中海威(北京)],VDAC1单克隆抗体(Elabscience),VBIT-12(Macklin),兔源GPX4抗体(杭州华安生物),兔源铁蛋白重链1抗体(FTH1,杭州华安生物,抗体同源率与斑马鱼为86.42%),线粒体铁蛋白(FTMT)抗体(Abmart),β-Tubulin 抗体、山羊抗兔二抗、山羊抗鼠二抗(Affinity Biosciences)。
1.1.3. 实验仪器
显微注射仪(NARISHIGE),荧光显微镜(Nikon),恒温培养箱(嘉兴市中新医疗器械有限公司),斑马鱼养殖系统(上海海圣生物实验设备有限公司),超纯水系统(Merck Millipore),分析天平(Mettler Toledo),通用电泳仪(Bio-Rad PowerPac),酶标仪,荧光多模式酶标仪(Tecan, INFINITE M PLEX),全自动化学发光/荧光图像分析系统(Tanon 5200 Multi)。
1.2. 实验方法
1.2.1. 构建斑马鱼急性肾损伤模型
斑马鱼饲养于广东省实验动物监测中心斑马鱼实验室,实验流程参照本实验室获CNAS和CMA认可标准方法GB/T 21807-2008《化学品鱼类胚胎和卵黄囊仔鱼阶段短期毒性试验》进行。本实验采用浓度为10 mg/mL的庆大霉素作为阳性对照物,肾小管标记的AB系转基因斑马鱼[Tg(Eco.Tshb:EGFP)]和和中性粒细胞标记Tg(lyz:dsRed2)转基因斑马鱼作为研究对象,选用发育至72 h同批次斑马鱼胚胎通过心脏静脉窦注射的方法构建急性肾损伤模型。
1.2.2. 肾毒性作用评价
将庆大霉素作为阳性对照药物。选择发育至72 h内同批次斑马鱼胚胎于24孔板中,10个胚胎/孔。根据既往斑马鱼仔鱼急性毒性试验的结果,设置1个空白对照组、1个庆大霉素阳性对照组(10 mg/mL)及3个敌草快暴露组(浓度梯度为10、20、40 μmol/L);设置3个重复孔/组,每个重复孔中含10粒健康斑马鱼胚胎。利用荧光显微镜,于32 h时观察肾损伤情况,包括心包、腹部、眼及卵黄囊水肿等情况;并观察敌草快对斑马鱼肾脏发育的毒性影响,如肾小管发育不良、缺失、肿大等。此外,利用中性粒细胞标记转基因斑马鱼[Tg(lyz:dsRed2)]观察炎症反应,并利用荧光显微镜拍照分析。
1.2.3. ROS活性检测
选用3dpf仔鱼,分别设置空白对照组、阳性药物(庆大霉素)对照组、以及3个浓度(10、20、40 μmol/L)的敌草快暴露组,处理32 h后,通过ROS活性检测试剂盒染色,1 h后利用荧光显微镜观察,随后荧光定量分析。
1.2.4. 病理学观察
取样步骤同上,取样吸干水后与波恩氏溶液中过夜固定。随后将其包埋固定在常规石蜡中,采用自动切片机连续切片(厚度5 μmol/L),苏木精-伊红(HE)染色,中性树胶封片,于显微镜下观察并拍照。
1.2.5. 肾小球过滤试验
暴露32 h后利用显微注射仪将罗丹明B标记葡聚糖显微注射入斑马鱼仔鱼体心脏静脉窦内,5 h后通过荧光显微镜观察肾小球过滤率;根据图片荧光定量分析,计算敌草快暴露组与对照组的过滤率降低比例。
1.2.6. 铁死亡机制研究
分别设置1个空白对照组、2个敌草快暴露浓度组(10、40 μmol/L),1个敌草快+Fer-1组,处理32 h后,对各组仔鱼免疫荧光检测肾组织GPX4和FTH1等蛋白表达情况。
1.2.7. Western blotting
按照蛋白试剂盒说明书操作提取蛋白,BCA法测定蛋白浓度,加入5×loading buffer,100 ℃金属浴变性10 min,-20 ℃保存。取10 μg蛋白,选择15%的SDS-PAGE胶,以80 V恒压进行电泳至溴酚蓝指示剂到达分离胶的底部,再以250 mA恒流进行转膜70 min,用无蛋白快速封闭液(ZOER)室温封闭30 min后,孵育对应的一抗稀释液过夜[VDAC1(1∶1000)、FTMT(1∶1000)、beta-Tubulin(1∶30 000)],TBST洗膜后室温孵育相应种属的二抗1 h[兔抗(1∶3000)、鼠抗(1∶10 000)],采用ECL化学发光试剂盒通过Tanon显影仪进行显影分析。
1.3. 统计学分析
采用SPSS 25.0统计软进行统计学分析,计量资料以均数±标准差表示,组间差异比较采用t检验,变量间关联性分析采用线性回归模型。Image J软件分析免疫荧光强度以及定量分析Western blotting条带灰度值。GraphPad Prism 8软件进行统计分析及可视化。以P<0.05为差异有统计学意义,上述实验均做3次生物学重复。
2. 结果
2.1. 敌草快引起斑马鱼急性肾损伤
给予斑马鱼胚胎暴露敌草快32 h后,庆大霉素和敌草快均能造成斑马鱼肾近曲小管的严重损伤,高浓度组的近曲小管弯曲度下降且长度变短(图1)。庆大霉素和敌草快诱发肾组织均能诱导炎症反应,表现为中性粒细胞明显增多、聚集(图2)。与空白对照组相比,庆大霉素阳性对照组和敌草快暴露组均能够诱导斑马鱼体内ROS含量明显升高,而且其含量随着敌草快暴露浓度增加而升高,呈良好的线性关系(R2=0.648,图3)。
图1.

敌草快对斑马鱼肾脏发育的影响
Fig.1 Effect of diquat on kidney development in zebrafish (Original magnification: ×40).Three replicates are shown in each group.
图2.

敌草快对斑马鱼体内炎症反应的影响
Fig.2 Inflammatory response induced by diquat in zebrafish (×40).
图3.

荧光定量分析敌草快暴露对斑马鱼活体ROS水平的影响
Fig.3 Fluorescence quantitative analysis of the effect of diquat on ROS level in live-stained zebrafish (×40). A: Control group. B: Gentamicin-positive group. C: Diquat 10 μmol/L group. D: Diquat 20 μmol/L group. E: Diquat 40 μmol/L group. F: Results of quantitative analysis.
2.2. 铁死亡参与敌草快致急性肾损伤的分子机制
与空白对照组相比,敌草快暴露组GPX4蛋白表达量降低,且随着敌草快暴露浓度越高,GPX4表达量下降愈明显(P=0.039);FTH1蛋白表达量随着敌草快暴露浓度升高而升高(P=0.016)。在敌草快40 μmol/L组中加入20 μmol/L铁死亡抑制剂Fer-1后,GPX4的表达量上调(P=0.040),而FTH1的表达量下降(P=0.042,图4)。
图4.

抑制铁死亡对敌草快引起斑马鱼肾组织GPX4和FTH1表达影响
Fig 4 Effect of ferroptosis inhibition on expressions of GPX4 and FTH1 in the kidneys of diquat-exposed zebrafish (×400). A, B: Immunofluorescence and quantitative analysis of GPX4. C,D: Immunofluorescence and quantitative analysis of FTH1. The white arrows indicated the zebrafish kidney tissue. *P<0.05.
与空白对照组相比,庆大霉素阳性对照组和敌草快暴露组罗丹明B标记葡聚糖代谢变慢,且其随着敌草快暴露浓度增加而下降,表现为残余荧光增加(P<0.001);在敌草快40 μmol/L暴露组进一步给予Fer-1干预后,代谢率明显恢复(P=0.024,图5)。庆大霉素和敌草快均能造成斑马鱼肾组织损伤,如近曲小管的广泛受损,包括基底膜剥离、小管腔内细胞碎片聚集等。给予铁死亡抑制剂Fer-1后,肾近曲小管损伤减轻,表现为近曲小管基底膜相对完整、小管腔内少许细胞碎片(图6)。
图5.

敌草快暴露对斑马鱼肾小球滤过率的影响
Fig.5 Effect of diquat exposure on glomerular filtration rate in zebrafish (×40). The metabolism of rhodamine B-labeled dextran was detected using fluorescence quantification. A: Control group. B: Gentamicin-positive group. C: Diquat 10 μmol/L group. D: Diquat 20 μmol/L group. E: Diquat 40 μmol/L group. F: Diquat 40 μmol/L group+Fer-1 intervention group. G: The results of quantitative analysis. *P<0.05, ***P<0.001.
图6.

病理学分析敌草快暴露对斑马鱼肾组织损伤的影响
Fig.6 Pathological analysis of the effect of diquat exposure on renal injury in zebrafish (HE staining, ×400). A: Control group. B: Gentamicin-positive group. C: Diquat exposure 40 μmol/L group. D: Diquat 40 μmol/L group+Fer-1 intervention group.
2.3. VDAC1/线粒体铁蛋白调控铁死亡
与对照组相比,敌草快(40 μmol/L)暴露能够引起VDAC1和FTMT蛋白表达水平均升高(P<0.001),而给予铁死亡抑制剂Fer-1干预后两者表达水平下调(P=0.010、0.006)。进一步给予VDAC1抑制剂(VBIT-12)后,FTMT的表达水平较敌草快暴露组下调(P<0.001,图7)。
图7.

敌草快暴露与干预对VDAC1和FTMT蛋白表达的影响
Fig.7 Effect of diquat exposure and drug interventions on protein expressions of VDAC1 and FTMT. A: Protein expressions of VDAC1 and FTMT detected using Western blotting. B: Quantitative analysis of the protein expressions (n=20). *P<0.05, **P<0.01, ***P<0.001. Each experimental repetition involved 20 larvae.
3. 讨论
斑马鱼肾脏具有与哺乳动物肾脏相似的组织学结构和生理功能[19],是一种重要模式生物。斑马鱼幼鱼在48 hpf时肾脏发育完成并具备滤过功能[20],且具备肾小球滤过功能和药物敏感性,是研究药物性肾损伤毒理机制的理想模型[21],这是本研究选择斑马鱼作为研究对象的原因。尽管敌草快毒理机制已在仔猪、肉鸡和大鼠等模型上开展[11, 22-24],但利用斑马鱼探讨敌草快肾毒性机制的研究仍较缺乏。为此,本研究利用斑马鱼模型探讨敌草快诱导铁死亡相关肾损伤的分子机制,为敌草快毒理研究提供新的机制视角。
肾脏是敌草快中毒的毒性动力学和氧化还原循环的主要靶器官,吸收进入血液循环的敌草快及其代谢物主要随尿液排出[4]。与既往研究[25]相似,本研究发现敌草快暴露引起斑马鱼明显的肾功能急性损伤,与阳性对照物庆大霉素类似[26],且损伤与暴露浓度呈正向剂量-反应关系。敌草快暴露后ROS含量明显上升,导致肾功能急性受损,与其更强的氧化还原能力和细胞毒性有关[10],涉及的分子机制可能是敌草快能够诱导活性氧过量产生,导致线粒体内稳态失衡及功能障碍[27];同时也观察到斑马鱼体内出现以中性粒细胞浸润为主的炎症反应,这可能与敌草快诱导的氧化应激有关[28, 29]。敌草快诱导的氧化应激反应、炎症反应引起的急性肾损伤涉及复杂的分子机制。有研究发现敌草快能够引起仔猪空肠组织损伤和屏障功能障碍,分子机制涉及氧化应激诱导的细胞凋亡和铁死亡[30]。体外实验阐明了敌草快诱导内皮细胞线粒体基因组的不稳定性,靶向ZBP1/ripk3依赖性的坏死性凋亡和铁死亡途径是潜在的干预靶点,有助于减轻不良结局[11]。再者,敌草快暴露诱导线粒体ROS过量积累、FTH1下调以及Fe2+超载,导致肾组织出现焦亡相关的损伤机制[31]。铁死亡已被证实是敌草快致肾损伤的核心机制之一。
在DQ诱导的神经元损伤研究中,尽管凋亡与线粒体自噬共同参与病理进程,但依达拉奉通过特异性调控铁死亡通路,表现出显著优于其他死亡模式的神经保护作用[32]。更重要的是,铁死亡直接驱动肾小管上皮细胞坏死:近期研究发现,铁螯合剂“16~86”可有效阻断缺血性或中毒性肾损伤中的铁死亡级联反应[33]。上述证据共同表明,靶向铁死亡机制是干预敌草快毒性损伤的关键策略,亦是本研究聚焦敌草快诱导铁死亡相关的肾损伤机制的核心依据。本研究证实敌草快暴露可显著改变铁死亡关键标志物GPX4与FTH1的蛋白表达水平,并诱发炎症反应与肾组织损伤。其核心机制可能是敌草快阳离子和O2-促进铁离子(Fe3+)转化为亚铁离子(Fe2+),使得体内游离亚铁离子迅速升高,进而诱导氧化还原反应[31, 34]。而给予铁死亡抑制剂Fer-1干预后,GPX4和FTH1表达发生改变以及肾近曲小管损伤减轻。其中涉及铁死亡抑制剂Fer-1通过清除敌草快诱导的过量自由基,降低不稳定铁水平,抑制铁依赖的链式反应来阻断铁死亡过程,从而有效缓解肾小管上皮细胞的脂质过氧化损伤[35, 36]。以上结果提示铁死亡是敌草快致急性肾损伤的核心驱动机制,为靶向干预提供了实验室数据。
VDAC1是线粒体外膜中最丰富的孔蛋白之一,作为线粒体通透性的核心调节因子,通过调控亚铁离子线粒体内流来维持线粒体不稳定铁池,增强了线粒体抗氧化等方面的作用[37, 38]。本研究证实了敌草快可显著上调VDAC1和FTMT的表达水平,而铁死亡抑制剂Fer-1干预可同步下调二者的表达,说明VDAC1和FTMT深度参与敌草快诱导的铁死亡调控。涉及的分子机制可能是铁死亡抑制剂通过降低VDAC1表达水平以及恢复GPX4的水平来保护细胞免受活性氧的损害,减少铁死亡相关的线粒体损伤[17]。另一方面,VBIT-12主要通过抑制VDAC1的寡聚化,降低线粒体通透性从而发挥维持线粒体稳态、减轻铁死亡等作用[39, 40]。在肾组织中,FTMT主要表达于近端小管,具有亚铁酶活性,能够将过多的游离铁以FTMT的形式被储存,在维持线粒体铁稳态及抵抗铁死亡中起着重要作用[41]。跟既往研究[42]相比,本研究进一步论证了FTMT潜在的上游调控机制,发现VDAC1特异性抑制都能下调FTMT的表达水平,是由于VBIT-12抑制了VDAC1寡聚化从而减少铁离子的线粒体内流,维持线粒体铁稳态[43]。结果提示,VDAC1与FTMT之间可能存在相互作用关系,并在线粒体铁稳态及铁死亡机制中起重要调控作用。
本研究的局限性在于:敌草快靶器官损伤机制非常复杂,本研究仅局限于铁死亡机制的探讨,尚未横向比较凋亡、坏死性凋亡以及焦亡等其他死亡方式的贡献权重;VDAC1/FTMT调控关系的证据深度不足,尽管本研究提示VDAC1与FTMT可能通过线粒体铁稳态调控铁死亡,但缺乏二者直接作用的分子证据,有待进一步深入研究;斑马鱼模型虽在早期肾损伤研究中具有优势,但种属间存在明显差异,需进一步开展跨物种模型验证。
综上,敌草快通过氧化还原循环触发脂质过氧化与炎症级联导致斑马鱼急性肾损伤,其中铁死亡是核心驱动机制,涉及VDAC1、FTMT与铁死亡之间的调控机制,可能是潜在的干预靶点。
基金资助
广州市科学技术局重点研发计划项目(202206010061);广州市重点学科(2025-2027);广州市市校(院)企联合资助专题(2023A03J0502、2023A03J0495);广州市卫生健康科技重大项目(2025A031002);广州市第十二人民医院高层次人才科研项目(2024-GCC-1、2024-GCC-2);广州医科大学科研能力提升计划项目(2023)
利益冲突声明
The authors declare no competinginterests.。
参考文献
- 1. Aloise DM, Memon A, Zaldivar A. Diquat herbicide organo-phosphate poisoning and multi-organ failure: a case report[J]. Cureus, 2022, 14(7): e27241. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 2. 孟 娜, 孙艺青, 刘 亮, 等. 急性敌草快中毒86例临床分析[J]. 中华危重病急救医学, 2022(3): 301-5. doi: 10.3760/cma.j.cn121430-20220128-00105 [DOI] [PubMed] [Google Scholar]
- 3. 敌草快中毒诊断与治疗专家共识组 . 急性敌草快中毒诊断与治疗专家共识[J]. 中华急诊医学杂志, 2020, 10(29): 1282-302. [Google Scholar]
- 4. Magalhães N, Carvalho F, Dinis-Oliveira RJ. Human and experimental toxicology of diquat poisoning: Toxicokinetics, mechanisms of toxicity, clinical features, and treatment[J]. Hum Exp Toxicol, 2018, 37(11): 1131-60. doi: 10.1177/0960327118765330 [DOI] [PubMed] [Google Scholar]
- 5. Zeng DH, Chen XH, Li Y, et al. Clinical and pathological characteristics of acute kidney injury caused by diquat poisoning[J]. Clin Toxicol (Phila), 2023, 61(9): 705-8. doi: 10.1080/15563650.2023.2262113 [DOI] [PubMed] [Google Scholar]
- 6. Vohra R, Salazar A, Cantrell FL, et al. The poison pen: bedside diagnosis of urinary diquat[J]. J Med Toxicol, 2010, 6(1): 35-6. doi: 10.1007/s13181-010-0033-6 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 7. Chen YC, Ou ZJ, Zhang RC, et al. Case report: Successful outcome of a young patient with rhabdomyolysis and shock caused by diquat poisoning[J]. Front Med (Lausanne), 2023, 10: 1116912. doi: 10.3389/fmed.2023.1116912 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 8. Yin J, Liu MF, Ren WK, et al. Effects of dietary supplementation with glutamate and aspartate on diquat-induced oxidative stress in piglets[J]. PLoS One, 2015, 10(4): e0122893. doi: 10.1371/journal.pone.0122893 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 9. Jović-Stosić J, Babić G, Todorović V. Fatal diquat intoxication[J]. Vojnosanit Pregl, 2009, 66(6): 477-81. doi: 10.2298/vsp0906477j [DOI] [PubMed] [Google Scholar]
- 10. Suleiman SA, Stevens JB. Bipyridylium herbicide toxicity: effects of paraquat and diquat on isolated rat hepatocytes[J]. J Environ Pathol Toxicol Oncol, 1987, 7(3): 73-84. doi: 10.3109/08923978709035231 [DOI] [PubMed] [Google Scholar]
- 11. Lai KM, Wang JJ, Lin SY, et al. Sensing of mitochondrial DNA by ZBP1 promotes RIPK3-mediated necroptosis and ferroptosis in response to diquat poisoning[J]. Cell Death Differ, 2024, 31(5): 635-50. doi: 10.1038/s41418-024-01279-5 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 12. von Mässenhausen A, Tonnus W, Himmerkus N, et al. Phenytoin inhibits necroptosis[J]. Cell Death Dis, 2018, 9(3): 359. doi: 10.1038/s41419-018-0394-3 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 13. Qin QY, Yu NJ, Gu YX, et al. Inhibiting multiple forms of cell death optimizes ganglion cells survival after retinal ischemia reperfusion injury[J]. Cell Death Dis, 2022, 13(5): 507. doi: 10.1038/s41419-022-04911-9 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 14. Wu YZ, Cui SQ, Wang WJ, et al. Kidney and lung injury in rats following acute diquat exposure[J]. Exp Ther Med, 2022, 23(4): 275. doi: 10.3892/etm.2022.11201 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 15. Scindia Y, Dey P, Thirunagari A, et al. Hepcidin mitigates renal ischemia-reperfusion injury by modulating systemic iron homeostasis[J]. J Am Soc Nephrol, 2015, 26(11): 2800-14. doi: 10.1681/asn.2014101037 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 16. 黄 奕, 林丽珊, 黄浩华, 等. VDAC1通过诱导气道上皮细胞铁死亡参与屋尘螨诱导的哮喘小鼠气道炎症[J]. 南方医科大学学报, 2023, 43(8): 1333-8. [Google Scholar]
- 17. Kim J, Gupta R, Blanco LP, et al. VDAC oligomers form mitochondrial pores to release mtDNA fragments and promote lupus-like disease[J]. Science, 2019, 366(6472): 1531-6. doi: 10.1126/science.aav4011 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 18. Howe K, Clark MD, Torroja CF, et al. The zebrafish reference genome sequence and its relationship to the human genome[J]. Nature, 2013, 496(7446): 498-503. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 19. McCampbell KK, Springer KN, Wingert RA. Analysis of nephron composition and function in the adult zebrafish kidney[J]. J Vis Exp, 2014(90): e51644. doi: 10.3791/51644-v [DOI] [PMC free article] [PubMed] [Google Scholar]
- 20. Diep CQ, Peng ZZ, Ukah TK, et al. Development of the zebrafish mesonephros[J]. Genesis, 2015, 53(3/4): 257-69. doi: 10.1002/dvg.22846 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 21. Outtandy P, Russell C, Kleta R, et al. Zebrafish as a model for kidney function and disease[J]. Pediatr Nephrol, 2019, 34(5): 751-62. doi: 10.1007/s00467-018-3921-7 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 22. Xu X, Wei Y, Hua HW, et al. Glycine alleviated intestinal injury by inhibiting ferroptosis in piglets challenged with diquat[J]. Animals (Basel), 2022, 12(22): 3071. doi: 10.3390/ani12223071 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 23. Chen YN, Zhang H, Li Y, et al. Pterostilbene confers protection against diquat-induced intestinal damage with potential regulation of redox status and ferroptosis in broiler chickens[J]. Oxid Med Cell Longev, 2023, 2023: 8258354. doi: 10.1155/2023/8258354 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 24. Cheng JY, Yang L, Zhang ZL, et al. Diquat causes mouse testis injury through inducing heme oxygenase-1-mediated ferroptosis in spermatogonia[J]. Ecotoxicol Environ Saf, 2024, 280: 116562. doi: 10.1016/j.ecoenv.2024.116562 [DOI] [PubMed] [Google Scholar]
- 25. Cui SQ, Zhang XX, Wang C, et al. Study on the therapeutic effect of glucocorticoids on acute kidney injury in rats exposed to diquat[J]. Biomed Pharmacother, 2023, 166: 115310. doi: 10.1016/j.biopha.2023.115310 [DOI] [PubMed] [Google Scholar]
- 26. Gorgulho R, Jacinto R, Lopes SS, et al. Usefulness of zebrafish larvae to evaluate drug-induced functional and morphological renal tubular alterations[J]. Arch Toxicol, 2018, 92(1): 411-23. doi: 10.1007/s00204-017-2063-1 [DOI] [PubMed] [Google Scholar]
- 27. Drechsel DA, Patel M. Differential contribution of the mitochondrial respiratory chain complexes to reactive oxygen species production by redox cycling agents implicated in Parkinsonism[J]. Toxicol Sci, 2009, 112(2): 427-34. doi: 10.1093/toxsci/kfp223 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 28. Qu J, Pei H, Li XZ, et al. Erythrocyte membrane biomimetic EGCG nanoparticles attenuate renal injury induced by diquat through the NF-κB/NLRP3 inflammasome pathway[J]. Front Pharmacol, 2024, 15: 1414918. doi: 10.3389/fphar.2024.1414918 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 29. Huang SF, Lin SR, Zhou SL, et al. Soluble thrombomodulin alleviates Diquat-induced acute kidney injury by inhibiting the HMGB1/IκBα/NF‑κB signalling pathway[J]. Food Chem Toxicol, 2023, 178: 113871. doi: 10.1016/j.fct.2023.113871 [DOI] [PubMed] [Google Scholar]
- 30. Liu Y, Yuan JM, Xi WS, et al. Lactiplantibacillus plantarum ameliorated morphological damage and barrier dysfunction and reduced apoptosis and ferroptosis in the jejunum of oxidatively stressed piglets[J]. Animals (Basel), 2024, 14(22): 3335. doi: 10.3390/ani14223335 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 31. Chen KY, Tang YH, Lan LH, et al. Autophagy mediated FTH1 degradation activates gasdermin E dependent pyroptosis contributing to diquat induced kidney injury[J]. Food Chem Toxicol, 2024, 184: 114411. doi: 10.1016/j.fct.2023.114411 [DOI] [PubMed] [Google Scholar]
- 32. Wu LZ, Luo ZW, Luo FL, et al. Edaravone inhibits neuronal ferroptosis and alleviates acute Central nervous system injury induced by diquat via enhancement of METTL14-mediated m6A methylation of Aldh1l1[J]. Free Radic Res, 2025, 59(3): 274-88. doi: 10.1080/10715762.2025.2482774 [DOI] [PubMed] [Google Scholar]
- 33. Linkermann A, Skouta R, Himmerkus N, et al. Synchronized renal tubular cell death involves ferroptosis[J]. Proc Natl Acad Sci USA, 2014, 111(47): 16836-41. doi: 10.1073/pnas.1415518111 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 34. Sun MF, Zhu L, Chen X. The role of ferroptosis in renal injury induced by diquat[J]. Chin J Indust Hygiene Occupat Dis, 2025, 43(1): 14-24. [DOI] [PubMed] [Google Scholar]
- 35. Yang YT, Lin QS, Zhu XY, et al. Activation of lipophagy is required for RAB7 to regulate ferroptosis in sepsis-induced acute kidney injury[J]. Free Radic Biol Med, 2024, 218: 120-31. doi: 10.1016/j.freeradbiomed.2024.04.213 [DOI] [PubMed] [Google Scholar]
- 36. Cao YX, Liu XW, Guo CJ, et al. Biomimetic reactive oxygen/nitrogen nanoscavengers inhibit "ferroptosis storm" and modulate immune targeting for acute kidney injury[J]. J Control Release, 2025, 379: 59-76. doi: 10.1016/j.jconrel.2025.01.006 [DOI] [PubMed] [Google Scholar]
- 37. Karmi O, Marjault HB, Bai F, et al. A VDAC1-mediated NEET protein chain transfers [2Fe-2S] clusters between the mitochondria and the cytosol and impacts mitochondrial dynamics[J]. Proc Natl Acad Sci USA, 2022, 119(7): e2121491119. doi: 10.1073/pnas.2121491119 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 38. Shao FY, Han JY, Tian ZY, et al. Synergistic ROS generation and directional overloading of endogenous calcium induce mito-chondrial dysfunction in living cells[J]. Biomaterials, 2023, 301: 122284. doi: 10.1016/j.biomaterials.2023.122284 [DOI] [PubMed] [Google Scholar]
- 39. Niu BL, Lei XH, Xu QL, et al. Protecting mitochondria via inhibiting VDAC1 oligomerization alleviates ferroptosis in acetaminophen-induced acute liver injury[J]. Cell Biol Toxicol, 2022, 38(3): 505-30. doi: 10.1007/s10565-021-09624-x [DOI] [PubMed] [Google Scholar]
- 40. Yang J, Lu X, Hao JL, et al. VSTM2L protects prostate cancer cells against ferroptosis via inhibiting VDAC1 oligomerization and maintaining mitochondria homeostasis[J]. Nat Commun, 2025, 16(1): 1160. doi: 10.1038/s41467-025-56494-6 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 41. Drysdale J, Arosio P, Invernizzi R, et al. Mitochondrial ferritin: a new player in iron metabolism[J]. Blood Cells Mol Dis, 2002, 29(3): 376-83. doi: 10.1006/bcmd.2002.0577 [DOI] [PubMed] [Google Scholar]
- 42. Wang YQ, Chang SY, Wu Q, et al. The protective role of mitochondrial ferritin on erastin-induced ferroptosis[J]. Front Aging Neurosci, 2016, 8: 308. doi: 10.3389/fnagi.2016.00308 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 43. Qian B, Jiang RJ, Song JL, et al. Organophosphorus flame retardant TDCPP induces neurotoxicity via mitophagy-related ferroptosis in vivo and in vitro [J]. Chemosphere, 2022, 308(Pt 2): 136345. doi: 10.1016/j.chemosphere.2022.136345 [DOI] [PubMed] [Google Scholar]
