Skip to main content
Journal of Southern Medical University logoLink to Journal of Southern Medical University
. 2025 Aug 20;45(8):1581–1588. [Article in Chinese] doi: 10.12122/j.issn.1673-4254.2025.08.02

孕期恐应激通过降低大鼠胎盘氨基酸转运体表达损害子代认知发育

Prenatal fear stress impairs cognitive development in offspring rats by disrupting placental amino acid transport

DU Zhixin 1,2,1, WANG Yueyang 1, YANG Liping 1,2,, HOU Junlin 1,, SUN Jianhua 2, FAN Pengbei 3, WANG Yaohui 1, LI Xiaolin 1
Editor: 林 萍
PMCID: PMC12415581  PMID: 40916519

Abstract

Objective

To investigate the impact of prenatal fear stress on placental amino acid transport and emotion and cognition development in offspring rats.

Methods

Thirty pregnant Wistar rats were randomized equally into control and fear stress (induced using an observational foot shock model) groups. In each group, placental and serum samples were collected from 6 dams on gestational day 20, and the remaining rats delivered naturally and the offspring rats were raised under the same conditions until 8 weeks of age. Emotional and cognitive outcomes of the offspring rats were assessed with behavioral tests, and placental structure was examined using HE staining. Bioinformatics analysis was used to identify differentially expressed placental transporter genes under fear stress. The expressions of system A and system L amino acid transporters, along with other specialized transporters, were detected using qRT-PCR and Western blotting. Fetal serum amino acid concentrations were determined by HPLC. The correlations between fetal amino acid levels and behavioral outcomes of the offspring rats were analyzed.

Results

The dams with fear stress showed reduced open-field activity and increased freezing behavior with significantly decreased placental weight, fetal weight, and fetal-to-placental ratio. Bioinformatics analysis revealed 28 differentially expressed transporter genes involved mainly in amino acid transport. In the fear stress group, fetal serum amino acid levels were significantly lowered and Slc38a1, Slc43a1, Slc43a2, Slc7a8, Slc6a6, Slc1a1 and Slc6a9 mRNA and protein expressions were all downregulated. The offspring rats in fear stress group exhibited decreased novel object preference and spontaneous alternation with reduced open arm exploration and increased immobility in emotional tests. Lower early-life amino acid levels was found to correlate with impaired adult cognition.

Conclusion

Prenatal fear stress in rats impairs placental amino acid transporter expression and reduces fetal serum amino acid levels, potentially contributing to long-term cognitive deficits in the offspring rats.

Keywords: fear stress, placenta, amino acid transport, offspring emotion, cognition development


全球约15%的孕产妇受不良情绪困扰,其中恐惧情绪的发生率可达8%~14%1。在我国孕产妇中,恐惧情绪的发生率为4.4%~10.5%2。研究表明,孕期的不良情绪不仅可以通过母体下丘脑-垂体-肾上腺轴对子代的近远期发育产生不良的影响3,还可以通过胎盘-大脑轴直接影响胎儿在宫内的生长发育4。近年来,胎盘-大脑轴的提出为解析生命早期健康与疾病的起源提供了新的思路5。胎盘作为母胎界面的核心调控器官,可以通过多种途径影响胎儿的发育6。研究发现孕期不良情绪会降低体胎盘中11β-羟基类固醇脱氢酶2型酶的表达,导致胎儿过度暴露于母源性皮质醇,从而导致宫内发育受限等不良妊娠结局7,并增加子代远期代谢性疾病及心理问题的发生风险8。值得注意的是,胎盘功能减退也会影响胎儿的生长发育。其中,胎盘的营养物转运功能直接影响胎儿的宫内发育水平,这是由于胎儿生长所需的氨基酸与葡萄糖等营养物质需要从母体通过胎盘转运至胎儿体内9,进而来维持胎儿正常的发育。胎盘的营养物转运功能的受损可以导致子代生长受限,神经系统损伤以及代谢编程异常等10

氨基酸是蛋白质合成的基本单元,对胎儿的生长发育有着重要的作用11。胎儿氨基酸的缺乏将直接影响其器官与神经的发育,而胎儿在宫内的氨基酸供给主要通过胎盘微绒毛和基底膜上的氨基酸转运体12-13。胎盘氨基酸转运体主要有A系、L系以及具有特殊转运功能的转运体等14。这些氨基酸转运体共同协作,形成了一个复杂的网络,从而确保胎儿发育所需氨基酸的供给15

怀孕期间暴露于压力和心理障碍已被证实会导致胎儿神经发育的异常16,从而对子代情感及认知的发育产生不良影响17-19。课题组前期研究发现孕期恐应激可以影响胎盘的营养物转运功能20,导致子代发育不良2122。然而,关于孕期恐应激对胎盘氨基酸转运系统及其与子代情绪与认知发育的研究尚未见发表。基于此,本研究首次构建“孕期恐应激-胎盘氨基酸转运-子代行为学”的研究框架,以胎盘氨基酸转运体为切入点,探讨孕期恐应激对胎盘氨基酸转运功能及子代情绪与认知发育的影响。

1. 材料和方法

1.1. 材料

SPF级80 d龄Wistar雌鼠30只、雄鼠25只,均购自北京维通利华实验动物技术有限公司[许可证号:SCXK(浙)2019-0001]。本研究已通过动物伦理委员会批准(伦理批号:DWLL202108003)。适应性喂养7 d后开始实验。雌鼠与雄鼠按2∶1的比例合笼受孕至孕鼠达到30只。随后,将30只孕鼠随机分为正常组和恐应激组,15只/组。恐应激组孕鼠在孕期1~19 d接受旁观电击法造模。孕期第20天,每组随机选取6只孕鼠进行采血并收集胎盘样本以及胎鼠血液样本。剩余孕鼠自然分娩,所产的子鼠延续母鼠的分组,并喂养至8周龄。RIPA裂解液、RNA提取液、BCA蛋白定量检测试剂盒、β-肌动蛋白以及辣根过氧化物酶标记山羊抗小鼠(Servicebio);Slc38a1、Slc38a2、Slc38a4、Slc43a1、Slc43a2、Slc6a6,Slc1a1以及Slc6a9抗体(Proteintech);电击交流敞箱(自制) ;场景恐惧系统(Thermo) ;EMUC7型全自动超薄切片机(Lca) ;CFX型实时荧光定量聚合酶链式反应仪(Bio-Rad) ;DYCZ-24DN型双垂直电泳仪(北京六一仪器厂) ;显微镜(日本奥林巴斯株式会社)。

1.2. 方法

1.2.1. 孕期恐应激对孕鼠行为学的影响

1.2.1.1. 旷场实验

运用旷场评价各组孕鼠的焦虑抑郁状况,观察5 min内孕鼠的中央区停留时间及穿格次数。

1.2.1.2. 场景恐惧实验

第1天,大鼠接受包含噪音、光和电刺激的适应性训练,结束后放回笼中。第2天,进行测试,但不进行电刺激,记录大鼠冻结时间。

1.2.2. 孕期恐应激对胎盘及胎鼠重量的影响

各组选取6只孕鼠进行腹主动脉采血,随后迅速剥离胎盘并记录胎盘及胎鼠的重量,剩余孕鼠自然生产。

1.2.3. 胎盘HE染色

将胎盘组织切片后脱蜡脱水,HE染色后脱水封片,光镜下观察胎盘组织结构。

1.2.4. 生物信息学分析

从NCBI的SRA数据库(https://submit.ncbi.nlm.nih.gov/subs/sra/)下载恐应激胎盘测序数据(登录号为PRJNA837736)并进行差异分析。通过GO数据库(http://geneontology.org/)获取转运体基因集,筛选出差异表达的转运体基因,并进行功能富集分析,“ggplot2”包对富集结果将进行可视化分析。

1.2.5. qRT-PCR检测

从-80 ℃中取出各组胎盘组织,提取胎盘总RNA,反转录成cDNA,之后进行Real-time PCR检测,并通过2-△△ct法计算基因mRNA的表达水平。引物合成自Servicebio,具体序列见表1

表1.

引物序列

Tab.1 Sequences of primers for RT-qPCR

Name of primers Primer sequence 5'-3'
GAPDH-F CTGGAGAAACCTGCCAAGTATG
GAPDH-R GGTGGAAGAATGGGAGTTGCT
Slc38a2-F CGTTCACCTCCTCCTCAAGACT
Slc38a2-R TTCAGATACCACAGCCCATTCG
Slc38a1-F CGTTCACCTCCTCCTCAAGACT
Slc38a1-R TTCAGATACCACAGCCCATTCG
Slc38a4-F ATGAAGATGCCGAAAGTCAGAAG
Slc38a4-R GGTGAACCGAGTAGAGCGATAGA
Slc43a1-F TTCTATTCCAGTCTATGCCCAGC
Slc43a1-R CAAGGCCATAAGAGTGCAGGAT
Slc43a2-F TGGGCATCATCATGGACAAGTAT
Slc43a2-R AAGGTAACTGCTGAGGAAGCGTAG
Slc6a6-F GAAGGGTTATCGTCGGGAAAT
Slc6a6-R ATACATGCCACCCTCCGTCA
Slc1a1-F ATCGTGGTAGGAGTCTTGGTTCG
Slc1a1-R AGGATTACAGCAATGACGGTGGT
Slc6a9-F ACTACGCAGCCAGCTTCTCCTT
Slc6a9-R TGGTAGTGGTTGTAAGTGATTGGC

1.2.6. Western blotting实验

用含有PMSF的RIPA裂解缓冲液提取胎盘的蛋白质,随后,将蛋白质变性。通过12% SDS-PAGE凝胶电泳分离样品并转移至PVDF膜后,用5%脱脂乳封闭膜1 h。接下来,将膜与一抗孵育4 ℃过夜(Slc38a1,1∶1000稀释)、(Slc38a2,1∶1000稀释)、(Slc38a4,1∶1000稀释)、(Slc43a1,1∶1000稀释)、(Slc43a2,1∶2000稀释)、(Slc6a6,1∶2000稀释)、(Slc1a1,1∶1000稀释)、(Slc6a9,1∶3000稀释),第2天进行3次TBST洗涤,并与二抗(β-actin,1∶5000稀释)一起孵育1 h后显影并扫描胶片,之后使用ImageJ软件进行分析。

1.2.7. 高效液相法检测胎鼠血清氨基酸含量

采用高效液相法检测胎鼠血清氨基酸含量,色谱柱为 C18(4.6×250 mm, 5 μm),缓冲盐为20 mmol/L乙酸钠溶液,pH=7.2,流动相A为缓冲盐-甲醇-四氢呋喃,流动相B为缓冲盐-甲醇。设定流动相流速0.8 mL/min,柱温35 ℃,荧光检测器激发波长为340 nm,发射波长为455 nm。

F: Forward; R: Reverse.

1.2.8. 孕期恐应激对子鼠行为学的影响

从8周龄雄性子鼠中随机选取10只,评估其情绪发育以及认知发育。

1.2.8.1. 高架十字迷宫实验

将子鼠放置于中央区,面向一侧闭臂,视频记录子鼠3 min内的活动,统计开放臂停留时间比例。

1.2.8.2. 悬尾实验

用胶布粘住子鼠尾端,使其成倒挂状态,头部离箱底20 cm,观察6 min并记录子鼠4 min内的不动时间。

1.2.8.3. Y迷宫实验

将子鼠放在Y迷宫任意一臂末端,任其自由探索8 min,分析计算自发交替反应率。自发交替反应率(%)=总轮流次数/(总进臂次数-2)×100%。

1.2.8.4. 新物体识别实验

将两个颜色、形状完全相同的物体固定在箱中,将子鼠放入箱内自由探索10 min,1 h后用颜色形状完全不同的物体将其中一个物体替换,再将子鼠放入自由探索5 min,统计并计算子鼠的新物体偏好指数,新物体偏好指数(%)=探索新物体时间/总探索时间×100%。

1.3. 统计学分析

采用SPSS 22.0软件进行统计学处理,服从正态分布且满足方差齐性检验的数据以均数±标准差表示,组间比较采用两独立样本t检验。使用Spearman法进行相关性分析,P<0.05为差异具有统计学意义。

2. 结果

2.1. 孕期恐应激对孕鼠行为学的影响

旷场实验中,与正常组相比,恐应激组孕鼠中央区时间及穿格次数均降低(P<0.01,图1A、B)。在场景恐惧实验中,与正常组相比,恐应激组的冻结时间与冻结时间百分比均提高(P<0.01,图1C、D)。

图1.

图1

孕期恐应激对孕鼠行为学的影响

Fig.1 Impact of prenatal fear stress on behaviors of pregnant rats. A: Time spent in the central area in open field test; B: Number of grid crossings in open field test; C: Freezing time in contextual Fear Paradigm; D: Percentage of freezing time in contextual Fear Paradigm. ***P<0.001 vs Control group.

2.2. 孕期恐应激对胎盘胎鼠体质量比的影响

与正常组相比,恐应激组胎盘与胎鼠质量均降低(P<0.01,图2A);恐应激组胎鼠胎盘质量比降低(P<0.01,图2B)。

图2.

图2

孕期恐应激对胎盘胎鼠重量的影响

Fig.2 Impact of prenatal fear stress on placental weight (PW) and fetal weight (FW). A: Placental and fetal weight; B: Placental-Fetal ratio. *P<0.05,**P<0.01,***P<0.001 vs Control group.

2.3. 孕期恐应激对胎盘结构的影响

HE染色对胎盘进行组织形态学分析显示,孕期恐应激导致胎盘交界区和迷宫区面积减少(图3)。

图3.

图3

孕期恐应激对胎盘结构的影响

Fig.3 Effect of prenatal fear stress on placental structure (HE staining, Scale bar=500 μm). A: Control group. B: Fear stress group. D: Decidua zone; Jz: Junctional zone; Lab: Labyrinth zone.

2.4. 孕期恐应激胎盘的生物信息学分析

在恐应激胎盘中发现998个差异表达的基因(|log2FC|>0.5且P<0.05)。韦恩图共发现28个差异表达的转运体(图4A)。28个差异转运体基因的功能富集分析发现GO分析主要富集在氨基酸转运,有机酸跨膜转运,氨基酸跨膜转运,L-氨基酸转运,中性氨基酸转运等条目(图4B);KEGG分析主要富集在蛋白质消化与吸收,突触囊泡周期,钙信号通路,谷氨酸能突触等通路上(图4C)。

图4.

图4

孕期恐应激胎盘的生物信息学分析

Fig.4 Bioinformatics analysis of the placenta under prenatal fear stress. A: Venn diagram. B: Gene ontology analysis. C: Kyoto encyclopedia of genes and genomes pathway analysis. DEGs: Differentially expressed genes.

2.5. 孕期恐应激对胎盘氨基酸转运体的影响

与正常组相比,恐应激组胎盘中的Slc38a1的蛋白表达与基因表达均下降(P<0.05,图5)。与正常组相比,恐应激组胎盘L系氨基酸转运体Slc43a1与Slc43a2的基因表达与蛋白表达均下降(P<0.05),Slc7a8的蛋白表达下降(P<0.05,图6)。

图5.

图5

孕期恐应激对胎盘A系氨基酸转运体mRNA与蛋白表达的影响

Fig.5 Effect of prenatal fear stress on protein (A) and mRNA (B) expressions of system A amino acid transporters in the placenta. *P<0.05, ***P<0.001 vs Control group.

图6.

图6

孕期恐应激对胎盘L系氨基酸转运体mRNA与蛋白表达的影响

Fig.6 Effect of prenatal fear stress on protein (A) and mRNA (B) expressions of system L amino acid transporters in the placenta. *P<0.05, **P<0.01 vs Control group.

Western blotting与PCR结果显示,与正常组相比,恐应激组中Slc6a6,Slc1a1以及Slc6a9的蛋白表达以及基因表达均下降(P<0.05,图7)。

图7.

图7

孕期恐应激对Slc6a6、Slc1a1与Slc6a9的mRNA与蛋白表达的影响

Fig.7 Effect of prenatal fear stress on protein (A) and mRNA (B) expressions of Slc6a6, Slc1a1 and Slc6a9. *P<0.05, **P<0.01,***P<0.001 vs Control group.

2.6. 孕期恐应激对胎鼠血清氨基酸含量的影响

高效液相法测量胎鼠血清中氨基酸含量发现,恐应激组胎鼠血清中谷氨酸、天冬氨酸、甘氨酸、丝氨酸、γ-氨基丁酸以及牛磺酸的含量均低于正常组胎鼠(P<0.05,图8)。

图8.

图8

孕期恐应激胎鼠血清氨基酸的影响

Fig.8 Effect of prenatal fear stress on serum amino acid levels in fetal mice.GLU: Glutamate; ASP: Aspartate; GLY: Glycine; SER: Serine; TAU: Taurine; GABA: Gamma-aminobutyric acid. **P<0.01,***P<0.001 vs Control group.

2.7. 孕期恐应激对子代情绪发育的影响

与正常组相比,恐应激组子鼠进入开臂次数百分比、进入开臂时间百分比均降低(P<0.001,图9A)。与正常组相比,恐应激组子鼠悬尾不动时间增加(P<0.01,图9B)。

图9.

图9

孕期恐应激对子鼠行为学的影响

Fig.9 Effect of prenatal fear stress on behaviors of adult offspring rats. A: Percentage of open arm time in elevated plus maze test. B: Immobility time in tail suspension test. C: Novel object preference index in novel object recognition test. D: Spontaneous alternation rate in Y-maze test (n=10). **P<0.01,***P<0.001 vs Control group.

2.8. 孕期恐应激对子代认知发育的影响

与正常组相比,恐应激组子鼠新物体偏好指数降低(P<0.01,图9C),子鼠自发交替率降低(P<0.01,图9D)。

2.9. 相关性分析

在正常组及恐应激组中,胎鼠血清中6种氨基酸水平均与子代新物体识别指数以及自发交替率呈正相关关系(图10)。

图10.

图10

相关性分析

Fig.10 Correlation analysis of serum glutamate (A), aspartate (B), glycine (C), serine (D), taurine (E) and gamma-aminobutyric acid (F) levels with behavioral performance in fetal rats.

3. 讨论

孕期胎儿所需的营养主要来源于母体,胎盘作为母体与胎儿之间物质交换的关键结构,在维持胎儿正常生长发育中发挥着重要作用23。本研究结果显示,孕期恐应激可导致胎盘与胎儿的重量减轻,胎儿胎盘比重比降低,提示孕期恐应激可能引发胎盘功能障碍24。此外,胎盘迷宫区是胎盘功能的核心区域,其面积减少会对胎儿在宫内的生长发育产生不利影响25。本研究HE染色结果发现孕期恐应激导致胎盘结构改变,迷宫区面积减少。提示孕期恐应激影响了胎盘的结构和功能,对胎儿的生长发育造成了不良影响。

为进一步探讨孕期恐应激对胎盘功能的影响,我们进行了生物信息学分析,功能富集分析提示孕期恐应激影响了胎盘的氨基酸转运,L-氨基酸转运以及中性氨基酸转运等条目。其中,胎盘A系氨基酸转运体主要负责将中性氨基酸转运至胎儿体内26,A系氨基酸转运体的表达异常不仅会导致胎儿体质量降低,还会影响胎儿的神经系统发育27。本研究发现孕期恐应激会降低A系氨基酸转运体Slc38a1的蛋白与基因表达。胎盘L系氨基酸转运体主要转运大分子中性氨基酸,如亮氨酸、异亮氨酸、苯丙氨酸等,与胎儿的生长发育密切相关28。本研究发现孕期恐应激影响L系氨基酸转运体Slc43a1与Slc43a2的蛋白与基因表达。系统β氨基酸转运体Slc6a6主要负责牛磺酸的转运,牛磺酸对胎儿神经系统的生长发育有着重要作用29。X型氨基酸转运体Slc1a1是谷氨酸和天冬氨酸的主要转运蛋白30,有研究发现Slc1a1的表达降低会导致胎儿生长受限的发生31。Slc6a9主要转运甘氨酸与肌氨酸,研究发现怀孕期间母体胎盘中Slc6a9的表达降低会影响胎儿的大脑发育32。本实验研究发现孕期恐应激降低了Slc6a6、Slc1a1以及Slc6a9的蛋白与基因表达。以上研究结果提示孕期恐应激会降低胎盘A系、L系及特定氨基酸转运体的蛋白及基因的表达,本研究进一步通过高效液相实验发现恐应激组胎鼠血清中6种代表性氨基酸含量均显著降低,提示氨基酸转运体表达的降低导致了胎盘转运氨基酸的效率降低,进而影响了胎儿在宫内的生长发育。

胎儿时期氨基酸的缺乏会影响成年后情绪及认知的发展,并增加患慢性疾病以及神经发育障碍疾病的风险33。为探讨孕期恐应激对成年后子代的情绪与认知能力的影响,本文选取8周龄成年雄性子鼠进行行为学检测,结果提示孕期恐应激会导致子代成年后认知能力的下降,并出现焦虑抑郁样情绪。进一步的相关性分析显示,子代成年后认知能力的下降与早期血液中氨基酸含量降低相关。

本研究有一定的局限性。首先,本研究仅选取雄性子代小鼠进行评估,并未纳入雌性子代,而性别在和应激反应中具有潜在的调节作用34,因此后续研究应纳入雌性子代,以期全面揭示孕期恐应激对不同性别子代是否存在的差异性影响。其次,本研究仅观察到子代 8 周龄的子代行为学变化,缺乏对子代的长期追踪,无法确定孕期恐应激所致影响能否持续至成年后期甚至老年阶段。最后,虽然本研究初步发现孕期恐应激可影响胎盘氨基酸转运功能,但尚未深入探讨其具体分子机制。未来研究应进一步解析孕期恐应激影响氨基酸转运体的表达的具体机制。

综上所述,本文首次系统探讨了孕期恐应激对胎盘氨基酸转运功能的影响及子代情绪与认知发育的影响,研究发现孕期恐应激可以降低胎盘氨基酸转运体的基因与蛋白表达,导致子代血清中的氨基酸水平下降,而血清氨基酸水平的降低又与成年后子代认知能力的减弱密切相关。这一发现为解析孕期心理应激导致的子代发育异常的“胎盘-大脑轴”机制提供新的研究思路。

基金资助

国家自然科学基金(81973596);河南省科技攻关(212102310341)

Supported by National Natural Science Foundation of China (81973596).

利益冲突声明

The authors declare no competinginterests.。

参考文献

  • 1. Li B, Liu T, Ma D, et al. Association of fear of childbirth and postpartum depression with perceived partner response during pregnancy[J]. BMC Pregnancy Childbirth, 2025, 25(1): 211. doi: 10.1186/s12884-025-07332-6 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2. Jing Q, Jie J, Ke X, et al. The relationship between fear of childbirth and prenatal depression in pregnant women during pregnancy: a cross-lagged analysis[J]. BMC Pregnancy Childbirth, 2025, 25(1): 192. doi: 10.1186/s12884-025-07321-9 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3. Levendosky AA, Grimm KJ, Lonstein JS, et al. Pinpointing the timing of prenatal stress associated with infant biobehavioral reactivity[J]. Psychoneuroendocrinology, 2025, 173: 107368. doi: 10.1016/j.psyneuen.2025.107368 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4. Li L, Zhang W, Sun C, et al. Scutellariae Radix ameliorates prenatal stress-induced anxiety-like and depression-like behavior in the offspring via reversing HPA axis hyperfunction and ameliorating neurodevelopmental dysfunction[J]. Dev Neurosci, 2024: 1-19. doi: 10.1159/000543152 [DOI] [PubMed] [Google Scholar]
  • 5. Cheng J, Jin H, Zhang Y, et al. Small for gestational age children at risk: Identifying placenta-brain axis genes as biomarkers for early prediction of neurodevelopmental delay[J]. Life Sci, 2025, 365: 123450. doi: 10.1016/j.lfs.2025.123450 [DOI] [PubMed] [Google Scholar]
  • 6. Castro-Quintas A, Palma-Gudiel H, Eixarch E, et al. Placental epigenetic signatures of maternal distress in glucocorticoid-related genes and newborn outcomes: a study of Spanish primiparous women[J]. Eur Neuropsychopharmacol, 2025, 90: 36-47. doi: 10.1016/j.euroneuro.2024.10.001 [DOI] [PubMed] [Google Scholar]
  • 7. Botía M, Escribano D, Tecles F, et al. Changes in Cortisol, cortisone and 11β-hydroxysteroid dehydrogenase type II activity in saliva during pregnancy and lactation in sows[J]. Domest Anim Endocrinol, 2024, 89: 106875. doi: 10.1016/j.domaniend.2024.106875 [DOI] [PubMed] [Google Scholar]
  • 8. Heynen JP, McHugh RR, Boora NS, et al. Urinary 1H NMR metabolomic analysis of prenatal maternal stress due to a natural disaster reveals metabolic risk factors for non-communicable diseases: the QF2011 Queensland flood study[J]. Metabolites, 2023, 13(4): 579. doi: 10.3390/metabo13040579 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9. Cho SKS, Darby JRT, Saini BS, et al. Late-gestation maternal undernutrition induces circulatory redistribution while preserving uteroplacental function independent of fetal glycaemic state[J]. J Physiol, 2024, 602(24): 7065-83. doi: 10.1113/jp287171 [DOI] [PubMed] [Google Scholar]
  • 10. Liu S, Hua L, Mo X, et al. Comparative impact of alternate-day fasting and time-restricted feeding on placental function and fetal development in maternal obesity[J]. Nutrients, 2024, 17(1): 25. doi: 10.3390/nu17010025 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11. Oliveira TRDP, Lima-Oliveira DP, de Paula MBM, et al. Consequences of the modulation of gestational resistance training intensity for placental cell composition and nutrient transporter expression[J]. Placenta, 2025, 161: 55-64. doi: 10.1016/j.placenta.2025.01.012 [DOI] [PubMed] [Google Scholar]
  • 12. Pereira-Carvalho D, Chagas Valim AC, Borba Vieira Andrade C, et al. Sex-specific effect of antenatal Zika virus infection on murine fetal growth, placental nutrient transporters, and nutrient sensor signaling pathways[J]. FASEB J, 2024, 38(13): e23799. doi: 10.1096/fj.202301951rr [DOI] [PubMed] [Google Scholar]
  • 13. Schroeder M, Fuenzalida B, Yi N, et al. LAT1-dependent placental methionine uptake is a key player in fetal programming of metabolic disease[J]. Metabolism, 2024, 153: 155793. doi: 10.1016/j.metabol.2024.155793 [DOI] [PubMed] [Google Scholar]
  • 14. Jia Q, Guo X, Cao Q, et al. Assisted reproductive technology causes reduced expression of amino acid transporters in human full-term placentas[J]. Pathol Res Pract, 2022, 239: 154169. doi: 10.1016/j.prp.2022.154169 [DOI] [PubMed] [Google Scholar]
  • 15. Duan BB, Ran SJ, Wu L, et al. Maternal supplementation spermidine during gestation improves placental angiogenesis and reproductive performance of high prolific sows[J]. J Nutr Biochem, 2025, 136: 109792. doi: 10.1016/j.jnutbio.2024.109792 [DOI] [PubMed] [Google Scholar]
  • 16. 张玉荣, 王瑞忠, 陈 蕊, 等. 产前应激子代大鼠海马Wnt/β-catenin信号通路的改变诱导抑郁和焦虑样行为[J]. 南方医科大学学报, 2019, 39(2): 222-6. doi: 10.12122/j.issn.1673-4254.2019.09.15 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17. Aldinger JK, Abele H, Kranz A. Prenatal maternal psychological stress (PMPS) and its effect on the maternal and neonatal outcome: a retrospective cohort study[J]. Healthcare: Basel, 2024, 12(23): 2431. doi: 10.3390/healthcare12232431 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18. Ren FY, Zhu XW, Liu JN, et al. Associations of multiple risk factors with prenatal depression and anxiety: Evidence from the Tianjin Birth Cohort (TJBC) study[J]. J Affect Disord, 2024, 366: 411-22. doi: 10.1016/j.jad.2024.08.122 [DOI] [PubMed] [Google Scholar]
  • 19. Wu Y, De Asis-Cruz J, Limperopoulos C. Brain structural and functional outcomes in the offspring of women experiencing psychological distress during pregnancy[J]. Mol Psychiatry, 2024, 29(7): 2223-40. doi: 10.1038/s41380-024-02449-0 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20. 宋 琦, 杜志欣, 杨丽萍, 等. 恐惧应激对妊娠期大鼠胎盘葡萄糖转运体表达水平的影响[J]. 中国实验动物学报, 2024, 32(7): 828-35. [Google Scholar]
  • 21. Jiang Y, Zhang T, Yang LP, et al. Downregulation of FTO in the hippocampus is associated with mental disorders induced by fear stress during pregnancy[J]. Behav Brain Res, 2023, 453: 114598. doi: 10.1016/j.bbr.2023.114598 [DOI] [PubMed] [Google Scholar]
  • 22. 吴永叶, 杨丽萍, 张振强, 等. 五行音乐对孕期恐应激子代社交行为的影响及机制研究[J]. 中国比较医学杂志, 2024, 34(4): 28-34. [Google Scholar]
  • 23. Li QH, Zhang QZ, Su SL, et al. Maternal fish oil supplementation enhances nutrient transport in the placenta and milk biosynthesis in the mammary gland via the GPR120 signaling pathway[J]. J Adv Res, 2024, 1232(24): 607-16. [DOI] [PubMed] [Google Scholar]
  • 24. Vrooman LA, Rhon-Calderon EA, Suri KV, et al. Placental abnormalities are associated with specific windows of embryo culture in a mouse model[J]. Front Cell Dev Biol, 2022, 10: 884088. doi: 10.3389/fcell.2022.884088 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25. Wang L, Wang H, Luo J, et al. Decorin promotes decidual M1-like macrophage polarization via mitochondrial dysfunction resulting in recurrent pregnancy loss[J]. Theranostics, 2022, 12(17): 7216-36. doi: 10.7150/thno.78467 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26. Kadife E, Harper A, De Alwis N, et al. SLC38A4 amino acid transporter expression is significantly lower in early preterm intrauterine growth restriction complicated placentas[J]. Int J Mol Sci, 2022, 24(1): 403. doi: 10.3390/ijms24010403 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27. Bourdon A, Hannigsberg J, Misbert E, et al. Maternal supplementation with citrulline or arginine during gestation impacts fetal amino acid availability in a model of intrauterine growth restriction (IUGR)[J]. Clin Nutr, 2020, 39(12): 3736-43. doi: 10.1016/j.clnu.2020.03.036 [DOI] [PubMed] [Google Scholar]
  • 28. Rosario FJ, Barentsen K, Powell TL, et al. Trophoblast-specific overexpression of the LAT1 increases transplacental transport of essential amino acids and fetal growth in mice[J]. PNAS Nexus, 2024, 3(6): pgae207. doi: 10.1093/pnasnexus/pgae207 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29. Furukawa T, Fukuda A. Maternal taurine as a modulator of Cl- homeostasis as well as of Glycine/GABAA receptors for neocortical development[J]. Front Cell Neurosci, 2023, 17: 1221441. doi: 10.3389/fncel.2023.1221441 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30. Noorlander CW, de Graan PNE, Nikkels PGJ, et al. Distribution of glutamate transporters in the human placenta[J]. Placenta, 2004, 25(6): 489-95. doi: 10.1016/j.placenta.2003.10.018 [DOI] [PubMed] [Google Scholar]
  • 31. Crouse MS, McLean KJ, Greseth NP, et al. The effects of maternal nutrient restriction and day of early pregnancy on the location and abundance of neutral amino acid transporters in beef heifer utero-placental tissues[J]. J Anim Sci, 2020, 98(7): skaa197. doi: 10.1093/jas/skaa197 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32. McColl ER, Piquette-Miller M. Poly(I: C) alters placental and fetal brain amino acid transport in a rat model of maternal immune activation[J]. Am J Reprod Immunol, 2019, 81(6): e13115. doi: 10.1111/aji.13115 [DOI] [PubMed] [Google Scholar]
  • 33. Feng C, Wu Y, Zhang X, et al. Maternal milk fat globule membrane enriched gut L. murinus and circulating SCFAs to improve placental efficiency and fetal development in intrauterine growth restricted mice model[J]. Gut Microbes, 2025, 17(1): 2449095. doi: 10.1080/19490976.2024.2449095 [DOI] [PubMed] [Google Scholar]
  • 34. Ferreira-Rodrigues M, Sousa IS, Baptista FI, et al. Stress in utero: prenatal dexamethasone exposure causes greater structural gliovascular alterations in female offspring than in males[J]. Front Neurosci, 2025, 19: 1539867. doi: 10.3389/fnins.2025.1539867 [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Southern Medical University are provided here courtesy of Editorial Department of Journal of Southern Medical University

RESOURCES