Abstract
An understanding of the spatial distribution of the black-legged tick, Ixodes scapularis, is a fundamental component in assessing human risk for Lyme disease in much of the United States. Although a county-level vector distribution map exists for the United States, its accuracy is limited by arbitrary categories of its reported presence. It is unknown whether reported positive areas can support established populations and whether negative areas are suitable for established populations. The steadily increasing range of I. scapularis in the United States suggests that all suitable habitats are not currently occupied. Therefore, we developed a spatially predictive logistic model for I. scapularis in the 48 conterminous states to improve the previous vector distribution map. We used ground-observed environmental data to predict the probability of established I. scapularis populations. The autologistic analysis showed that maximum, minimum, and mean temperatures as well as vapor pressure significantly contribute to population maintenance with an accuracy of 95% (p < 0.0001). A cutoff probability for habitat suitability was assessed by sensitivity analysis and was used to reclassify the previous distribution map. The spatially modeled relationship between I. scapularis presence and large-scale environmental data provides a robust suitability model that reveals essential environmental determinants of habitat suitability, predicts emerging areas of Lyme disease risk, and generates the future pattern of I. scapularis across the United States.
Full Text
The Full Text of this article is available as a PDF (1.1 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bertrand M. R., Wilson M. L. Microclimate-dependent survival of unfed adult Ixodes scapularis (Acari:Ixodidae) in nature: life cycle and study design implications. J Med Entomol. 1996 Jul;33(4):619–627. doi: 10.1093/jmedent/33.4.619. [DOI] [PubMed] [Google Scholar]
- Daniel M., Kolár J. Using satellite data to forecast the occurrence of the common tick Ixodes ricinus (L.). J Hyg Epidemiol Microbiol Immunol. 1990;34(3):243–252. [PubMed] [Google Scholar]
- Daniels T. J., Falco R. C., Fish D. Estimating population size and drag sampling efficiency for the blacklegged tick (Acari: Ixodidae). J Med Entomol. 2000 May;37(3):357–363. doi: 10.1603/0022-2585(2000)037[0357:EPSADS]2.0.CO;2. [DOI] [PubMed] [Google Scholar]
- Daniels T. J., Fish D., Levine J. F., Greco M. A., Eaton A. T., Padgett P. J., LaPointe D. A. Canine exposure to Borrelia burgdorferi and prevalence of Ixodes dammini (Acari: Ixodidae) on deer as a measure of Lyme disease risk in the northeastern United States. J Med Entomol. 1993 Jan;30(1):171–178. doi: 10.1093/jmedent/30.1.171. [DOI] [PubMed] [Google Scholar]
- Dennis D. T., Nekomoto T. S., Victor J. C., Paul W. S., Piesman J. Reported distribution of Ixodes scapularis and Ixodes pacificus (Acari: Ixodidae) in the United States. J Med Entomol. 1998 Sep;35(5):629–638. doi: 10.1093/jmedent/35.5.629. [DOI] [PubMed] [Google Scholar]
- Des Vignes F., Fish D. Transmission of the agent of human granulocytic ehrlichiosis by host-seeking Ixodus scapularis (Acari:Ixodidae) in southern New York state. J Med Entomol. 1997 Jul;34(4):379–382. doi: 10.1093/jmedent/34.4.379. [DOI] [PubMed] [Google Scholar]
- Dister S. W., Fish D., Bros S. M., Frank D. H., Wood B. L. Landscape characterization of peridomestic risk for Lyme disease using satellite imagery. Am J Trop Med Hyg. 1997 Dec;57(6):687–692. doi: 10.4269/ajtmh.1997.57.687. [DOI] [PubMed] [Google Scholar]
- Estrada-Peña Agustín. Increasing habitat suitability in the United States for the tick that transmits Lyme disease: a remote sensing approach. Environ Health Perspect. 2002 Jul;110(7):635–640. doi: 10.1289/ehp.110-1240908. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Galuzo I. G. Landscape epidemiology (epizootiology). Adv Vet Sci Comp Med. 1975;19:73–96. [PubMed] [Google Scholar]
- Keirans J. E., Hutcheson H. J., Durden L. A., Klompen J. S. Ixodes (Ixodes) scapularis (Acari:Ixodidae): redescription of all active stages, distribution, hosts, geographical variation, and medical and veterinary importance. J Med Entomol. 1996 May;33(3):297–318. doi: 10.1093/jmedent/33.3.297. [DOI] [PubMed] [Google Scholar]
- Kitron U., Kazmierczak J. J. Spatial analysis of the distribution of Lyme disease in Wisconsin. Am J Epidemiol. 1997 Mar 15;145(6):558–566. doi: 10.1093/oxfordjournals.aje.a009145. [DOI] [PubMed] [Google Scholar]
- Kitron U. Landscape ecology and epidemiology of vector-borne diseases: tools for spatial analysis. J Med Entomol. 1998 Jul;35(4):435–445. doi: 10.1093/jmedent/35.4.435. [DOI] [PubMed] [Google Scholar]
- Lindgren E., Tälleklint L., Polfeldt T. Impact of climatic change on the northern latitude limit and population density of the disease-transmitting European tick Ixodes ricinus. Environ Health Perspect. 2000 Feb;108(2):119–123. doi: 10.1289/ehp.00108119. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lindsay R., Artsob H., Barker I. Distribution of Ixodes pacificus and Ixodes scapularis re concurrent babesiosis and Lyme disease. Can Commun Dis Rep. 1998 Aug 1;24(15):121–122. [PubMed] [Google Scholar]
- Maupin G. O., Fish D., Zultowsky J., Campos E. G., Piesman J. Landscape ecology of Lyme disease in a residential area of Westchester County, New York. Am J Epidemiol. 1991 Jun 1;133(11):1105–1113. doi: 10.1093/oxfordjournals.aje.a115823. [DOI] [PubMed] [Google Scholar]
- Mount G. A., Haile D. G., Daniels E. Simulation of blacklegged tick (Acari:Ixodidae) population dynamics and transmission of Borrelia burgdorferi. J Med Entomol. 1997 Jul;34(4):461–484. doi: 10.1093/jmedent/34.4.461. [DOI] [PubMed] [Google Scholar]
- Needham G. R., Teel P. D. Off-host physiological ecology of ixodid ticks. Annu Rev Entomol. 1991;36:659–681. doi: 10.1146/annurev.en.36.010191.003303. [DOI] [PubMed] [Google Scholar]
- Orloski K. A., Hayes E. B., Campbell G. L., Dennis D. T. Surveillance for Lyme disease--United States, 1992-1998. MMWR CDC Surveill Summ. 2000 Apr 28;49(3):1–11. [PubMed] [Google Scholar]
- Ostfeld R. S., Hazler K. R., Cepeda O. M. Temporal and spatial dynamics of Ixodes scapularis (Acari: Ixodidae) in a rural landscape. J Med Entomol. 1996 Jan;33(1):90–95. doi: 10.1093/jmedent/33.1.90. [DOI] [PubMed] [Google Scholar]
- Randolph S. E. Climate, satellite imagery and the seasonal abundance of the tick Rhipicephalus appendiculatus in southern Africa: a new perspective. Med Vet Entomol. 1993 Jul;7(3):243–258. doi: 10.1111/j.1365-2915.1993.tb00684.x. [DOI] [PubMed] [Google Scholar]
- Randolph S. E., Rogers D. J. Fragile transmission cycles of tick-borne encephalitis virus may be disrupted by predicted climate change. Proc Biol Sci. 2000 Sep 7;267(1454):1741–1744. doi: 10.1098/rspb.2000.1204. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Reeves W. C., Hardy J. L., Reisen W. K., Milby M. M. Potential effect of global warming on mosquito-borne arboviruses. J Med Entomol. 1994 May;31(3):323–332. doi: 10.1093/jmedent/31.3.323. [DOI] [PubMed] [Google Scholar]
- Rogers D. J., Randolph S. E. The global spread of malaria in a future, warmer world. Science. 2000 Sep 8;289(5485):1763–1766. doi: 10.1126/science.289.5485.1763. [DOI] [PubMed] [Google Scholar]
- Schwartz I., Fish D., Daniels T. J. Prevalence of the rickettsial agent of human granulocytic ehrlichiosis in ticks from a hyperendemic focus of Lyme disease. N Engl J Med. 1997 Jul 3;337(1):49–50. doi: 10.1056/NEJM199707033370111. [DOI] [PubMed] [Google Scholar]
- Shope R. Global climate change and infectious diseases. Environ Health Perspect. 1991 Dec;96:171–174. doi: 10.1289/ehp.9196171. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Spielman A., Wilson M. L., Levine J. F., Piesman J. Ecology of Ixodes dammini-borne human babesiosis and Lyme disease. Annu Rev Entomol. 1985;30:439–460. doi: 10.1146/annurev.en.30.010185.002255. [DOI] [PubMed] [Google Scholar]