Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 2003 Jul;111(9):1164–1169. doi: 10.1289/ehp.5756

The relationship between environmental exposures to phthalates and DNA damage in human sperm using the neutral comet assay.

Susan M Duty 1, Narendra P Singh 1, Manori J Silva 1, Dana B Barr 1, John W Brock 1, Louise Ryan 1, Robert F Herrick 1, David C Christiani 1, Russ Hauser 1
PMCID: PMC1241569  PMID: 12842768

Abstract

Phthalates are industrial chemicals widely used in many commercial applications. The general population is exposed to phthalates through consumer products as well as through diet and medical treatments. To determine whether environmental levels of phthalates are associated with altered DNA integrity in human sperm, we selected a population without identified sources of exposure to phthalates. One hundred sixty-eight subjects recruited from the Massachusetts General Hospital Andrology Laboratory provided a semen and a urine sample. Eight phthalate metabolites were measured in urine by using high-performance liquid chromatography and tandem mass spectrometry; data were corrected for urine dilution by adjusting for specific gravity. The neutral single-cell microgel electrophoresis assay (comet assay) was used to measure DNA integrity in sperm. VisComet image analysis software was used to measure comet extent, a measure of total comet length (micrometers); percent DNA in tail (tail%), a measure of the proportion of total DNA present in the comet tail; and tail distributed moment (TDM), an integrated measure of length and intensity (micrometers). For an interquartile range increase in specific gravity-adjusted monoethyl phthalate (MEP) level, the comet extent increased significantly by 3.6 micro m [95% confidence interval (95% CI), 0.74-6.47]; the TDM also increased 1.2 micro m (95% CI, -0.05 to 2.38) but was of borderline significance. Monobutyl, monobenzyl, monomethyl, and mono-2-ethylhexyl phthalates were not significantly associated with comet assay parameters. In conclusion, this study represents the first human data to demonstrate that urinary MEP, at environmental levels, is associated with increased DNA damage in sperm.

Full Text

The Full Text of this article is available as a PDF (992.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson D., Yu T. W., Hinçal F. Effect of some phthalate esters in human cells in the comet assay. Teratog Carcinog Mutagen. 1999;19(4):275–280. doi: 10.1002/(sici)1520-6866(1999)19:4<275::aid-tcm4>3.0.co;2-1. [DOI] [PubMed] [Google Scholar]
  2. Blount B. C., Milgram K. E., Silva M. J., Malek N. A., Reidy J. A., Needham L. L., Brock J. W. Quantitative detection of eight phthalate metabolites in human urine using HPLC-APCI-MS/MS. Anal Chem. 2000 Sep 1;72(17):4127–4134. doi: 10.1021/ac000422r. [DOI] [PubMed] [Google Scholar]
  3. Blount B. C., Silva M. J., Caudill S. P., Needham L. L., Pirkle J. L., Sampson E. J., Lucier G. W., Jackson R. J., Brock J. W. Levels of seven urinary phthalate metabolites in a human reference population. Environ Health Perspect. 2000 Oct;108(10):979–982. doi: 10.1289/ehp.00108979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Boeniger M. F., Lowry L. K., Rosenberg J. Interpretation of urine results used to assess chemical exposure with emphasis on creatinine adjustments: a review. Am Ind Hyg Assoc J. 1993 Oct;54(10):615–627. doi: 10.1080/15298669391355134. [DOI] [PubMed] [Google Scholar]
  5. Bradbury J. UK panics over phthalates in babymilk formulae. Lancet. 1996 Jun 1;347(9014):1541–1541. doi: 10.1016/s0140-6736(96)90681-9. [DOI] [PubMed] [Google Scholar]
  6. Duty S. M., Singh N. P., Ryan L., Chen Z., Lewis C., Huang T., Hauser R. Reliability of the comet assay in cryopreserved human sperm. Hum Reprod. 2002 May;17(5):1274–1280. doi: 10.1093/humrep/17.5.1274. [DOI] [PubMed] [Google Scholar]
  7. Evenson D. P., Jost L. K., Baer R. K., Turner T. W., Schrader S. M. Individuality of DNA denaturation patterns in human sperm as measured by the sperm chromatin structure assay. Reprod Toxicol. 1991;5(2):115–125. doi: 10.1016/0890-6238(91)90039-i. [DOI] [PubMed] [Google Scholar]
  8. Evenson D. P., Jost L. K., Marshall D., Zinaman M. J., Clegg E., Purvis K., de Angelis P., Claussen O. P. Utility of the sperm chromatin structure assay as a diagnostic and prognostic tool in the human fertility clinic. Hum Reprod. 1999 Apr;14(4):1039–1049. doi: 10.1093/humrep/14.4.1039. [DOI] [PubMed] [Google Scholar]
  9. Fraga C. G., Motchnik P. A., Wyrobek A. J., Rempel D. M., Ames B. N. Smoking and low antioxidant levels increase oxidative damage to sperm DNA. Mutat Res. 1996 Apr 13;351(2):199–203. doi: 10.1016/0027-5107(95)00251-0. [DOI] [PubMed] [Google Scholar]
  10. Gangolli S. D. Testicular effects of phthalate esters. Environ Health Perspect. 1982 Nov;45:77–84. doi: 10.1289/ehp.824577. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Harris C. A., Henttu P., Parker M. G., Sumpter J. P. The estrogenic activity of phthalate esters in vitro. Environ Health Perspect. 1997 Aug;105(8):802–811. doi: 10.1289/ehp.97105802. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hoppin Jane A., Brock John W., Davis Barbara J., Baird Donna D. Reproducibility of urinary phthalate metabolites in first morning urine samples. Environ Health Perspect. 2002 May;110(5):515–518. doi: 10.1289/ehp.02110515. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hughes C. M., Lewis S. E., McKelvey-Martin V. J., Thompson W. Reproducibility of human sperm DNA measurements using the alkaline single cell gel electrophoresis assay. Mutat Res. 1997 Mar 21;374(2):261–268. doi: 10.1016/s0027-5107(96)00241-2. [DOI] [PubMed] [Google Scholar]
  14. Kleinsasser N. H., Kastenbauer E. R., Weissacher H., Muenzenrieder R. K., Harréus U. A. Phthalates demonstrate genotoxicity on human mucosa of the upper aerodigestive tract. Environ Mol Mutagen. 2000;35(1):9–12. doi: 10.1002/(sici)1098-2280(2000)35:1<9::aid-em2>3.0.co;2-1. [DOI] [PubMed] [Google Scholar]
  15. Kleinsasser N. H., Wallner B. C., Kastenbauer E. R., Weissacher H., Harréus U. A. Genotoxicity of di-butyl-phthalate and di-iso-butyl-phthalate in human lymphocytes and mucosal cells. Teratog Carcinog Mutagen. 2001;21(3):189–196. doi: 10.1002/tcm.1007. [DOI] [PubMed] [Google Scholar]
  16. Kleinsasser N. H., Weissacher H., Kastenbauer E. R., Dirschedl P., Wallner B. C., Harréus U. A. Altered genotoxicity in mucosal cells of head and neck cancer patients due to environmental pollutants. Eur Arch Otorhinolaryngol. 2000;257(6):337–342. doi: 10.1007/s004059900220. [DOI] [PubMed] [Google Scholar]
  17. Koo Jung-Wan, Parham Frederick, Kohn Michael C., Masten Scott A., Brock John W., Needham Larry L., Portier Christopher J. The association between biomarker-based exposure estimates for phthalates and demographic factors in a human reference population. Environ Health Perspect. 2002 Apr;110(4):405–410. doi: 10.1289/ehp.02110405. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Li L. H., Jester W. F., Jr, Orth J. M. Effects of relatively low levels of mono-(2-ethylhexyl) phthalate on cocultured Sertoli cells and gonocytes from neonatal rats. Toxicol Appl Pharmacol. 1998 Dec;153(2):258–265. doi: 10.1006/taap.1998.8550. [DOI] [PubMed] [Google Scholar]
  19. Lähdetie J., Ajosenpä-Saari M., Mykkänen J. Detection of aneuploidy in human spermatozoa of normal semen donors by fluorescence in situ hybridization. Environ Health Perspect. 1996 May;104 (Suppl 3):629–632. doi: 10.1289/ehp.104-1469614. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Martin R. H. Detection of genetic damage in human sperm. Reprod Toxicol. 1993;7 (Suppl 1):47–52. doi: 10.1016/0890-6238(93)90068-i. [DOI] [PubMed] [Google Scholar]
  21. McKelvey-Martin V. J., Green M. H., Schmezer P., Pool-Zobel B. L., De Méo M. P., Collins A. The single cell gel electrophoresis assay (comet assay): a European review. Mutat Res. 1993 Jul;288(1):47–63. doi: 10.1016/0027-5107(93)90207-v. [DOI] [PubMed] [Google Scholar]
  22. Møller P., Knudsen L. E., Loft S., Wallin H. The comet assay as a rapid test in biomonitoring occupational exposure to DNA-damaging agents and effect of confounding factors. Cancer Epidemiol Biomarkers Prev. 2000 Oct;9(10):1005–1015. [PubMed] [Google Scholar]
  23. Nakai M., Tabira Y., Asai D., Yakabe Y., Shimyozu T., Noguchi M., Takatsuki M., Shimohigashi Y. Binding characteristics of dialkyl phthalates for the estrogen receptor. Biochem Biophys Res Commun. 1999 Jan 19;254(2):311–314. doi: 10.1006/bbrc.1998.9928. [DOI] [PubMed] [Google Scholar]
  24. Nässberger L., Arbin A., Ostelius J. Exposure of patients to phthalates from polyvinyl chloride tubes and bags during dialysis. Nephron. 1987;45(4):286–290. doi: 10.1159/000184165. [DOI] [PubMed] [Google Scholar]
  25. Parks L. G., Ostby J. S., Lambright C. R., Abbott B. D., Klinefelter G. R., Barlow N. J., Gray L. E., Jr The plasticizer diethylhexyl phthalate induces malformations by decreasing fetal testosterone synthesis during sexual differentiation in the male rat. Toxicol Sci. 2000 Dec;58(2):339–349. doi: 10.1093/toxsci/58.2.339. [DOI] [PubMed] [Google Scholar]
  26. Peck C. C., Albro P. W. Toxic potential of the plasticizer Di(2-ethylhexyl) phthalate in the context of its disposition and metabolism in primates and man. Environ Health Perspect. 1982 Nov;45:11–17. doi: 10.1289/ehp.824511. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Sharpe R. M., Fisher J. S., Millar M. M., Jobling S., Sumpter J. P. Gestational and lactational exposure of rats to xenoestrogens results in reduced testicular size and sperm production. Environ Health Perspect. 1995 Dec;103(12):1136–1143. doi: 10.1289/ehp.951031136. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Singh N. P., Danner D. B., Tice R. R., McCoy M. T., Collins G. D., Schneider E. L. Abundant alkali-sensitive sites in DNA of human and mouse sperm. Exp Cell Res. 1989 Oct;184(2):461–470. doi: 10.1016/0014-4827(89)90344-3. [DOI] [PubMed] [Google Scholar]
  29. Singh N. P., McCoy M. T., Tice R. R., Schneider E. L. A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res. 1988 Mar;175(1):184–191. doi: 10.1016/0014-4827(88)90265-0. [DOI] [PubMed] [Google Scholar]
  30. Singh N. P., Ogburn C. E., Wolf N. S., van Belle G., Martin G. M. DNA double-strand breaks in mouse kidney cells with age. Biogerontology. 2001;2(4):261–270. doi: 10.1023/a:1013262327193. [DOI] [PubMed] [Google Scholar]
  31. Singh N. P., Stephens R. E. Microgel electrophoresis: sensitivity, mechanisms, and DNA electrostretching. Mutat Res. 1997 Mar 12;383(2):167–175. doi: 10.1016/s0921-8777(96)00056-0. [DOI] [PubMed] [Google Scholar]
  32. Sun J. G., Jurisicova A., Casper R. F. Detection of deoxyribonucleic acid fragmentation in human sperm: correlation with fertilization in vitro. Biol Reprod. 1997 Mar;56(3):602–607. doi: 10.1095/biolreprod56.3.602. [DOI] [PubMed] [Google Scholar]
  33. Thomas J. A., Curto K. A., Thomas M. J. MEHP/DEHP: gonadal toxicity and effects on rodent accessory sex organs. Environ Health Perspect. 1982 Nov;45:85–88. doi: 10.1289/ehp.824585. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Tremaine L. M., Quebbemann A. J. The renal handling of terephthalic acid. Toxicol Appl Pharmacol. 1985 Jan;77(1):165–174. doi: 10.1016/0041-008x(85)90277-7. [DOI] [PubMed] [Google Scholar]
  35. Undeğer U., Zorlu A. F., Başaran N. Use of the alkaline comet assay to monitor DNA damage in technicians exposed to low-dose radiation. J Occup Environ Med. 1999 Aug;41(8):693–698. doi: 10.1097/00043764-199908000-00012. [DOI] [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES