Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 2003 Jul;111(9):1180–1187. doi: 10.1289/ehp.5993

Bisphenol A is released from used polycarbonate animal cages into water at room temperature.

Kembra L Howdeshell 1, Paul H Peterman 1, Barbara M Judy 1, Julia A Taylor 1, Carl E Orazio 1, Rachel L Ruhlen 1, Frederick S Vom Saal 1, Wade V Welshons 1
PMCID: PMC1241572  PMID: 12842771

Abstract

Bisphenol A (BPA) is a monomer with estrogenic activity that is used in the production of food packaging, dental sealants, polycarbonate plastic, and many other products. The monomer has previously been reported to hydrolyze and leach from these products under high heat and alkaline conditions, and the amount of leaching increases as a function of use. We examined whether new and used polycarbonate animal cages passively release bioactive levels of BPA into water at room temperature and neutral pH. Purified water was incubated at room temperature in new polycarbonate and polysulfone cages and used (discolored) polycarbonate cages, as well as control (glass and used polypropylene) containers. The resulting water samples were characterized with gas chromatography/mass spectrometry (GC/MS) and tested for estrogenic activity using an MCF-7 human breast cancer cell proliferation assay. Significant estrogenic activity, identifiable as BPA by GC/MS (up to 310 micro g/L), was released from used polycarbonate animal cages. Detectable levels of BPA were released from new polycarbonate cages (up to 0.3 micro g/L) as well as new polysulfone cages (1.5 micro g/L), whereas no BPA was detected in water incubated in glass and used polypropylene cages. Finally, BPA exposure as a result of being housed in used polycarbonate cages produced a 16% increase in uterine weight in prepubertal female mice relative to females housed in used polypropylene cages, although the difference was not statistically significant. Our findings suggest that laboratory animals maintained in polycarbonate and polysulfone cages are exposed to BPA via leaching, with exposure reaching the highest levels in old cages.

Full Text

The Full Text of this article is available as a PDF (175.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ashby J., Tinwell H., Haseman J. Lack of effects for low dose levels of bisphenol A and diethylstilbestrol on the prostate gland of CF1 mice exposed in utero. Regul Toxicol Pharmacol. 1999 Oct;30(2 Pt 1):156–166. doi: 10.1006/rtph.1999.1317. [DOI] [PubMed] [Google Scholar]
  2. Brotons J. A., Olea-Serrano M. F., Villalobos M., Pedraza V., Olea N. Xenoestrogens released from lacquer coatings in food cans. Environ Health Perspect. 1995 Jun;103(6):608–612. doi: 10.1289/ehp.95103608. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Elswick B. A., Welsch F., Janszen D. B. Effect of different sampling designs on outcome of endocrine disruptor studies. Reprod Toxicol. 2000 Jul-Aug;14(4):359–367. doi: 10.1016/s0890-6238(00)00092-7. [DOI] [PubMed] [Google Scholar]
  4. Farabollini F., Porrini S., Dessì-Fulgherit F. Perinatal exposure to the estrogenic pollutant bisphenol A affects behavior in male and female rats. Pharmacol Biochem Behav. 1999 Dec;64(4):687–694. doi: 10.1016/s0091-3057(99)00136-7. [DOI] [PubMed] [Google Scholar]
  5. Grady L. H., Nonneman D. J., Rottinghaus G. E., Welshons W. V. pH-dependent cytotoxicity of contaminants of phenol red for MCF-7 breast cancer cells. Endocrinology. 1991 Dec;129(6):3321–3330. doi: 10.1210/endo-129-6-3321. [DOI] [PubMed] [Google Scholar]
  6. Haubruge E., Petit F., Gage M. J. Reduced sperm counts in guppies (Poecilia reticulata) following exposure to low levels of tributyltin and bisphenol A. Proc Biol Sci. 2000 Nov 22;267(1459):2333–2337. doi: 10.1098/rspb.2000.1288. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Honma Shizuka, Suzuki Atsuko, Buchanan David L., Katsu Yoshinao, Watanabe Hajime, Iguchi Taisen. Low dose effect of in utero exposure to bisphenol A and diethylstilbestrol on female mouse reproduction. Reprod Toxicol. 2002 Mar-Apr;16(2):117–122. doi: 10.1016/s0890-6238(02)00006-0. [DOI] [PubMed] [Google Scholar]
  8. Howdeshell K. L., Hotchkiss A. K., Thayer K. A., Vandenbergh J. G., vom Saal F. S. Exposure to bisphenol A advances puberty. Nature. 1999 Oct 21;401(6755):763–764. doi: 10.1038/44517. [DOI] [PubMed] [Google Scholar]
  9. Kloas W., Lutz I., Einspanier R. Amphibians as a model to study endocrine disruptors: II. Estrogenic activity of environmental chemicals in vitro and in vivo. Sci Total Environ. 1999 Jan 12;225(1-2):59–68. doi: 10.1016/s0048-9697(99)80017-5. [DOI] [PubMed] [Google Scholar]
  10. Krishnan A. V., Stathis P., Permuth S. F., Tokes L., Feldman D. Bisphenol-A: an estrogenic substance is released from polycarbonate flasks during autoclaving. Endocrinology. 1993 Jun;132(6):2279–2286. doi: 10.1210/endo.132.6.8504731. [DOI] [PubMed] [Google Scholar]
  11. Labarca C., Paigen K. A simple, rapid, and sensitive DNA assay procedure. Anal Biochem. 1980 Mar 1;102(2):344–352. doi: 10.1016/0003-2697(80)90165-7. [DOI] [PubMed] [Google Scholar]
  12. Markey C. M., Luque E. H., Munoz De Toro M., Sonnenschein C., Soto A. M. In utero exposure to bisphenol A alters the development and tissue organization of the mouse mammary gland. Biol Reprod. 2001 Oct;65(4):1215–1223. doi: 10.1093/biolreprod/65.4.1215. [DOI] [PubMed] [Google Scholar]
  13. Markey C. M., Michaelson C. L., Veson E. C., Sonnenschein C., Soto A. M. The mouse uterotrophic assay: a reevaluation of its validity in assessing the estrogenicity of bisphenol A. Environ Health Perspect. 2001 Jan;109(1):55–60. doi: 10.1289/ehp.0110955. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Metcalfe C. D., Metcalfe T. L., Kiparissis Y., Koenig B. G., Khan C., Hughes R. J., Croley T. R., March R. E., Potter T. Estrogenic potency of chemicals detected in sewage treatment plant effluents as determined by in vivo assays with Japanese medaka (Oryzias latipes). Environ Toxicol Chem. 2001 Feb;20(2):297–308. [PubMed] [Google Scholar]
  15. Nagel S. C., Hagelbarger J. L., McDonnell D. P. Development of an ER action indicator mouse for the study of estrogens, selective ER modulators (SERMs), and Xenobiotics. Endocrinology. 2001 Nov;142(11):4721–4728. doi: 10.1210/endo.142.11.8471. [DOI] [PubMed] [Google Scholar]
  16. Nagel S. C., vom Saal F. S., Thayer K. A., Dhar M. G., Boechler M., Welshons W. V. Relative binding affinity-serum modified access (RBA-SMA) assay predicts the relative in vivo bioactivity of the xenoestrogens bisphenol A and octylphenol. Environ Health Perspect. 1997 Jan;105(1):70–76. doi: 10.1289/ehp.9710570. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Oehlmann J., Schulte-Oehlmann U., Tillmann M., Markert B. Effects of endocrine disruptors on prosobranch snails (Mollusca: Gastropoda) in the laboratory. Part I: Bisphenol A and octylphenol as xeno-estrogens. Ecotoxicology. 2000 Dec;9(6):383–397. doi: 10.1023/a:1008972518019. [DOI] [PubMed] [Google Scholar]
  18. Olea N., Pulgar R., Pérez P., Olea-Serrano F., Rivas A., Novillo-Fertrell A., Pedraza V., Soto A. M., Sonnenschein C. Estrogenicity of resin-based composites and sealants used in dentistry. Environ Health Perspect. 1996 Mar;104(3):298–305. doi: 10.1289/ehp.96104298. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Palanza Paola L., Howdeshell Kembra L., Parmigiani Stefano, vom Saal Frederick S. Exposure to a low dose of bisphenol A during fetal life or in adulthood alters maternal behavior in mice. Environ Health Perspect. 2002 Jun;110 (Suppl 3):415–422. doi: 10.1289/ehp.02110s3415. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Rubin B. S., Murray M. K., Damassa D. A., King J. C., Soto A. M. Perinatal exposure to low doses of bisphenol A affects body weight, patterns of estrous cyclicity, and plasma LH levels. Environ Health Perspect. 2001 Jul;109(7):675–680. doi: 10.1289/ehp.01109675. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Samuelsen M., Olsen C., Holme J. A., Meussen-Elholm E., Bergmann A., Hongslo J. K. Estrogen-like properties of brominated analogs of bisphenol A in the MCF-7 human breast cancer cell line. Cell Biol Toxicol. 2001;17(3):139–151. doi: 10.1023/a:1011974012602. [DOI] [PubMed] [Google Scholar]
  22. Schönfelder G., Flick B., Mayr E., Talsness C., Paul M., Chahoud I. In utero exposure to low doses of bisphenol A lead to long-term deleterious effects in the vagina. Neoplasia. 2002 Mar-Apr;4(2):98–102. doi: 10.1038/sj.neo.7900212. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Schönfelder Gilbert, Wittfoht Werner, Hopp Hartmut, Talsness Chris E., Paul Martin, Chahoud Ibrahim. Parent bisphenol A accumulation in the human maternal-fetal-placental unit. Environ Health Perspect. 2002 Nov;110(11):A703–A707. doi: 10.1289/ehp.110-1241091. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Shelby M. D., Newbold R. R., Tully D. B., Chae K., Davis V. L. Assessing environmental chemicals for estrogenicity using a combination of in vitro and in vivo assays. Environ Health Perspect. 1996 Dec;104(12):1296–1300. doi: 10.1289/ehp.961041296. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Sohoni P., Tyler C. R., Hurd K., Caunter J., Hetheridge M., Williams T., Woods C., Evans M., Toy R., Gargas M. Reproductive effects of long-term exposure to Bisphenol A in the fathead minnow (Pimephales promelas). Environ Sci Technol. 2001 Jul 15;35(14):2917–2925. doi: 10.1021/es000198n. [DOI] [PubMed] [Google Scholar]
  26. Steinmetz R., Mitchner N. A., Grant A., Allen D. L., Bigsby R. M., Ben-Jonathan N. The xenoestrogen bisphenol A induces growth, differentiation, and c-fos gene expression in the female reproductive tract. Endocrinology. 1998 Jun;139(6):2741–2747. doi: 10.1210/endo.139.6.6027. [DOI] [PubMed] [Google Scholar]
  27. Tabata A., Kashiwada S., Ohnishi Y., Ishikawa H., Miyamoto N., Itoh M., Magara Y. Estrogenic influences of estradiol-17 beta, p-nonylphenol and bis-phenol-A on Japanese medaka (Oryzias latipes) at detected environmental concentrations. Water Sci Technol. 2001;43(2):109–116. [PubMed] [Google Scholar]
  28. Vandenbergh J. G. Coordination of social signals and ovarian function during sexual development. J Anim Sci. 1989 Jul;67(7):1841–1847. doi: 10.2527/jas1989.6771841x. [DOI] [PubMed] [Google Scholar]
  29. Villalobos M., Olea N., Brotons J. A., Olea-Serrano M. F., Ruiz de Almodovar J. M., Pedraza V. The E-screen assay: a comparison of different MCF7 cell stocks. Environ Health Perspect. 1995 Sep;103(9):844–850. doi: 10.1289/ehp.95103844. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Welshons W. V., Nagel S. C., Thayer K. A., Judy B. M., Vom Saal F. S. Low-dose bioactivity of xenoestrogens in animals: fetal exposure to low doses of methoxychlor and other xenoestrogens increases adult prostate size in mice. Toxicol Ind Health. 1999 Jan-Mar;15(1-2):12–25. doi: 10.1177/074823379901500103. [DOI] [PubMed] [Google Scholar]
  31. Yamasaki H., Nagake Y., Makino H. Determination of bisphenol a in effluents of hemodialyzers. Nephron. 2001 Aug;88(4):376–378. doi: 10.1159/000046023. [DOI] [PubMed] [Google Scholar]
  32. vom Saal F. S., Cooke P. S., Buchanan D. L., Palanza P., Thayer K. A., Nagel S. C., Parmigiani S., Welshons W. V. A physiologically based approach to the study of bisphenol A and other estrogenic chemicals on the size of reproductive organs, daily sperm production, and behavior. Toxicol Ind Health. 1998 Jan-Apr;14(1-2):239–260. doi: 10.1177/074823379801400115. [DOI] [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES