Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 2003 Aug;111(10):1273–1277. doi: 10.1289/ehp.6064

Low-dose exposure to inorganic mercury accelerates disease and mortality in acquired murine lupus.

Charles S Via 1, Phuong Nguyen 1, Florin Niculescu 1, John Papadimitriou 1, Dennis Hoover 1, Ellen K Silbergeld 1
PMCID: PMC1241605  PMID: 12896845

Abstract

Inorganic mercury (iHg) is known to induce autoimmune disease in susceptible rodent strains. Additionally, in inbred strains of mice prone to autoimmune disease, iHg can accelerate and exacerbate disease manifestations. Despite these well-known links between iHg and autoimmunity in animal models, no association between iHg alone and autoimmune disease in humans has been documented. However, it is possible that low-level iHg exposure can interact with disease triggers to enhance disease expression or susceptibility. To address whether exposure to iHg can alter the course of subsequent acquired autoimmune disease, we used a murine model of acquired autoimmunity, lupus-like chronic graft-versus-host disease (GVHD), in which autoimmunity is induced using normal, nonautoimmune prone donor and F1 recipient mice resistant to Hg-induced autoimmunity. Our results indicate that a 2-week exposure to low-dose iHg (20 or 200 micro g/kg every other day) to donor and host mice ending 1 week before GVHD induction can significantly worsen parameters of disease severity, resulting in premature mortality. iHg pretreatment clearly worsened chronic lupus-like disease, rather than GVHD worsening iHg immunotoxicity. These results are consistent with the hypothesis that low-level, nontoxic iHg preexposure may interact with other risk factors, genetic or acquired, to promote subsequent autoimmune disease development.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abedi-Valugerdi M., Hu H., Möller G. Mercury-induced renal immune complex deposits in young (NZB x NZW)F1 mice: characterization of antibodies/autoantibodies. Clin Exp Immunol. 1997 Oct;110(1):86–91. doi: 10.1046/j.1365-2249.1997.4901392.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bagenstose L. M., Class R., Salgame P., Monestier M. B7-1 and B7-2 co-stimulatory molecules are required for mercury-induced autoimmunity. Clin Exp Immunol. 2002 Jan;127(1):12–19. doi: 10.1046/j.1365-2249.2002.01700.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bigazzi P. E. Autoimmunity and heavy metals. Lupus. 1994 Dec;3(6):449–453. doi: 10.1177/096120339400300604. [DOI] [PubMed] [Google Scholar]
  4. Bruijn J. A., Van Elven E. H., Corver W. E., Oudshoorn-Snoek M., Fleuren G. J. Genetics of experimental lupus nephritis: non-H-2 factors determine susceptibility for renal involvement in murine chronic graft-versus-host disease. Clin Exp Immunol. 1989 May;76(2):284–289. [PMC free article] [PubMed] [Google Scholar]
  5. Goering P. L., Fisher B. R., Noren B. T., Papaconstantinou A., Rojko J. L., Marler R. J. Mercury induces regional and cell-specific stress protein expression in rat kidney. Toxicol Sci. 2000 Feb;53(2):447–457. doi: 10.1093/toxsci/53.2.447. [DOI] [PubMed] [Google Scholar]
  6. Griem P., Gleichmann E. Metal ion induced autoimmunity. Curr Opin Immunol. 1995 Dec;7(6):831–838. doi: 10.1016/0952-7915(95)80056-5. [DOI] [PubMed] [Google Scholar]
  7. Hultman P., Bell L. J., Eneström S., Pollard K. M. Murine susceptibility to mercury. I. Autoantibody profiles and systemic immune deposits in inbred, congenic, and intra-H-2 recombinant strains. Clin Immunol Immunopathol. 1992 Nov;65(2):98–109. doi: 10.1016/0090-1229(92)90212-7. [DOI] [PubMed] [Google Scholar]
  8. Hultman P., Eneström S. Dose-response studies in murine mercury-induced autoimmunity and immune-complex disease. Toxicol Appl Pharmacol. 1992 Apr;113(2):199–208. doi: 10.1016/0041-008x(92)90115-9. [DOI] [PubMed] [Google Scholar]
  9. Hultman P., Hansson-Georgiadis H. Methyl mercury-induced autoimmunity in mice. Toxicol Appl Pharmacol. 1999 Feb 1;154(3):203–211. doi: 10.1006/taap.1998.8576. [DOI] [PubMed] [Google Scholar]
  10. Hultman P., Nielsen J. B. The effect of dose, gender, and non-H-2 genes in murine mercury-induced autoimmunity. J Autoimmun. 2001 Aug;17(1):27–37. doi: 10.1006/jaut.2001.0521. [DOI] [PubMed] [Google Scholar]
  11. Hultman P., Turley S. J., Eneström S., Lindh U., Pollard K. M. Murine genotype influences the specificity, magnitude and persistence of murine mercury-induced autoimmunity. J Autoimmun. 1996 Apr;9(2):139–149. doi: 10.1006/jaut.1996.0017. [DOI] [PubMed] [Google Scholar]
  12. Ilbäck N. G., Wesslén L., Fohlman J., Friman G. Effects of methyl mercury on cytokines, inflammation and virus clearance in a common infection (coxsackie B3 myocarditis). Toxicol Lett. 1996 Dec;89(1):19–28. doi: 10.1016/s0378-4274(96)03777-0. [DOI] [PubMed] [Google Scholar]
  13. Lang Thomas J., Nguyen Phuong, Peach Robert, Gause William C., Via Charles S. In vivo CD86 blockade inhibits CD4+ T cell activation, whereas CD80 blockade potentiates CD8+ T cell activation and CTL effector function. J Immunol. 2002 Apr 15;168(8):3786–3792. doi: 10.4049/jimmunol.168.8.3786. [DOI] [PubMed] [Google Scholar]
  14. Mahaffey K. R., Mergler D. Blood levels of total and organic mercury in residents of the upper St. Lawrence River basin, Québec: association with age, gender, and fish consumption. Environ Res. 1998 May;77(2):104–114. doi: 10.1006/enrs.1998.3834. [DOI] [PubMed] [Google Scholar]
  15. Mathieson P. W. Mercuric chloride-induced autoimmunity. Autoimmunity. 1992;13(3):243–247. doi: 10.3109/08916939209004830. [DOI] [PubMed] [Google Scholar]
  16. Mirtcheva J., Pfeiffer C., De Bruijn J. A., Jacquesmart F., Gleichmann E. Immunological alterations inducible by mercury compounds. III. H-2A acts as an immune response and H-2E as an immune "suppression" locus for HgCl2-induced antinucleolar autoantibodies. Eur J Immunol. 1989 Dec;19(12):2257–2261. doi: 10.1002/eji.1830191212. [DOI] [PubMed] [Google Scholar]
  17. Monestier M., Losman M. J., Novick K. E., Aris J. P. Molecular analysis of mercury-induced antinucleolar antibodies in H-2S mice. J Immunol. 1994 Jan 15;152(2):667–675. [PubMed] [Google Scholar]
  18. Moszczyński P. Mercury compounds and the immune system: a review. Int J Occup Med Environ Health. 1997;10(3):247–258. [PubMed] [Google Scholar]
  19. Pietsch P., Vohr H. W., Degitz K., Gleichmann E. Immunological alterations inducible by mercury compounds. II. HgCl2 and gold sodium thiomalate enhance serum IgE and IgG concentrations in susceptible mouse strains. Int Arch Allergy Appl Immunol. 1989;90(1):47–53. [PubMed] [Google Scholar]
  20. Pollard K. M., Hultman P. Effects of mercury on the immune system. Met Ions Biol Syst. 1997;34:421–440. [PubMed] [Google Scholar]
  21. Pollard K. M., Lee D. K., Casiano C. A., Bluthner M., Johnston M. M., Tan E. M. The autoimmunity-inducing xenobiotic mercury interacts with the autoantigen fibrillarin and modifies its molecular and antigenic properties. J Immunol. 1997 Apr 1;158(7):3521–3528. [PubMed] [Google Scholar]
  22. Pollard K. M., Pearson D. L., Hultman P., Deane T. N., Lindh U., Kono D. H. Xenobiotic acceleration of idiopathic systemic autoimmunity in lupus-prone bxsb mice. Environ Health Perspect. 2001 Jan;109(1):27–33. doi: 10.1289/ehp.0110927. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Pollard K. M., Pearson D. L., Hultman P., Hildebrandt B., Kono D. H. Lupus-prone mice as models to study xenobiotic-induced acceleration of systemic autoimmunity. Environ Health Perspect. 1999 Oct;107 (Suppl 5):729–735. doi: 10.1289/ehp.99107s5729. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Rus V., Svetic A., Nguyen P., Gause W. C., Via C. S. Kinetics of Th1 and Th2 cytokine production during the early course of acute and chronic murine graft-versus-host disease. Regulatory role of donor CD8+ T cells. J Immunol. 1995 Sep 1;155(5):2396–2406. [PubMed] [Google Scholar]
  25. Silbergeld E. K., Sacci J. B., Jr, Azad A. F. Mercury exposure and murine response to Plasmodium yoelii infection and immunization. Immunopharmacol Immunotoxicol. 2000 Nov;22(4):685–695. doi: 10.3109/08923970009016432. [DOI] [PubMed] [Google Scholar]
  26. South P. K., Morris V. C., Levander O. A., Smith A. D. Mortality in mice infected with an amyocarditic coxsackievirus and given a subacute dose of mercuric chloride. J Toxicol Environ Health A. 2001 Aug 10;63(7):511–523. doi: 10.1080/15287390152410147. [DOI] [PubMed] [Google Scholar]
  27. Sweet L. I., Zelikoff J. T. Toxicology and immunotoxicology of mercury: a comparative review in fish and humans. J Toxicol Environ Health B Crit Rev. 2001 Apr-Jun;4(2):161–205. doi: 10.1080/109374001300339809. [DOI] [PubMed] [Google Scholar]
  28. Unkeless J. C. Characterization of a monoclonal antibody directed against mouse macrophage and lymphocyte Fc receptors. J Exp Med. 1979 Sep 19;150(3):580–596. doi: 10.1084/jem.150.3.580. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Van Rappard-Van Der Veen F. M., Radaszkiewicz T., Terraneo L., Gleichmann E. Attempts at standardization of lupus-like graft-vs-host disease: inadvertent repopulation by DBA/2 spleen cells of H-2-different nonirradiated F1 mice. J Immunol. 1983 Jun;130(6):2693–2701. [PubMed] [Google Scholar]
  30. Via C. S., Rus V., Gately M. K., Finkelman F. D. IL-12 stimulates the development of acute graft-versus-host disease in mice that normally would develop chronic, autoimmune graft-versus-host disease. J Immunol. 1994 Nov 1;153(9):4040–4047. [PubMed] [Google Scholar]
  31. Via C. S., Shearer G. M. T-cell interactions in autoimmunity: insights from a murine model of graft-versus-host disease. Immunol Today. 1988 Jul-Aug;9(7-8):207–213. doi: 10.1016/0167-5699(88)91215-7. [DOI] [PubMed] [Google Scholar]
  32. Via C. S., Shustov A., Rus V., Lang T., Nguyen P., Finkelman F. D. In vivo neutralization of TNF-alpha promotes humoral autoimmunity by preventing the induction of CTL. J Immunol. 2001 Dec 15;167(12):6821–6826. doi: 10.4049/jimmunol.167.12.6821. [DOI] [PubMed] [Google Scholar]
  33. Vimercati L., Santarelli L., Pesola G., Drago I., Lasorsa G., Valentino M., Vacca A., Soleo L. Monocyte-macrophage system and polymorphonuclear leukocytes in workers exposed to low levels of metallic mercury. Sci Total Environ. 2001 Apr 10;270(1-3):157–163. doi: 10.1016/s0048-9697(00)00780-4. [DOI] [PubMed] [Google Scholar]
  34. Warfvinge K., Hansson H., Hultman P. Systemic autoimmunity due to mercury vapor exposure in genetically susceptible mice: dose-response studies. Toxicol Appl Pharmacol. 1995 Jun;132(2):299–309. doi: 10.1006/taap.1995.1111. [DOI] [PubMed] [Google Scholar]
  35. al-Balaghi S., Möller E., Möller G., Abedi-Valugerdi M. Mercury induces polyclonal B cell activation, autoantibody production and renal immune complex deposits in young (NZB x NZW)F1 hybrids. Eur J Immunol. 1996 Jul;26(7):1519–1526. doi: 10.1002/eji.1830260717. [DOI] [PubMed] [Google Scholar]
  36. van Elven E. H., Agterberg J., Sadal S., Gleichmann E. Diseases caused by reactions of T lymphocytes to incompatible structures of the major histocompatibility complex. II. Autoantibodies deposited along the basement membrane of skin and their relationship to immune-complex glomerulonephritis. J Immunol. 1981 May;126(5):1684–1691. [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES