Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 2003 Aug;111(10):1294–1298. doi: 10.1289/ehp.6088

Diminished experience-dependent neuroanatomical plasticity: evidence for an improved biomarker of subtle neurotoxic damage to the developing rat brain.

Christopher S Wallace 1, Jonathon Reitzenstein 1, Ginger S Withers 1
PMCID: PMC1241609  PMID: 12896849

Abstract

Millions of children are exposed to low levels of environmental neurotoxicants as their brains are developing. Conventional laboratory methods of neurotoxicology can detect maldevelopment of brain structure but are not designed to detect maldevelopment of the brain's capacity for plasticity that could impair learning throughout life. The environmental complexity (EC) paradigm has become classic for demonstrating the modifications in brain structure that occur in response to experience and thus provides a set of indices for plasticity in the healthy brain. In this study, we have tested the hypothesis that if degradation of experience-dependent cortical plasticity is used as a biomarker, then developmental neurotoxic effects will be detected at doses below those that alter cortical morphogenesis overtly. Pregnant Long-Evans hooded rats received a single injection of either saline vehicle or 1, 5, 10, or 25 mg/kg of the well-characterized developmental neurotoxicant methylazoxymethanol acetate (MAM) on the 16th or 17th day of gestation. On postnatal days 35-39, male offspring were assigned to either a complex environment (EC) or an individual cage (IC) for 28 days to stimulate neuroanatomical plasticity. This response was measured as the difference between the thickness of visual cortex of IC and EC littermates at a given dose. The threshold dose for significant reduction of cortical thickness was 25 mg/kg, but the threshold dose for failure of plasticity was much lower and could be detected at 1 mg/kg, the lowest dose used. No other method of assessment has detected lasting effects of prenatal exposure to MAM at such a low dose. These data suggest that this simple test of plasticity could be an efficient way to detect subtle neurotoxic damage to the developing brain.

Full Text

The Full Text of this article is available as a PDF (359.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Balduini W., Elsner J., Lombardelli G., Peruzzi G., Cattabeni F. Treatment with methylazoxymethanol at different gestational days: two-way shuttle box avoidance and residential maze activity in rat offspring. Neurotoxicology. 1991 Winter;12(4):677–686. [PubMed] [Google Scholar]
  2. Becker L. E., Armstrong D. L., Chan F., Wood M. M. Dendritic development in human occipital cortical neurons. Brain Res. 1984 Mar;315(1):117–124. doi: 10.1016/0165-3806(84)90083-x. [DOI] [PubMed] [Google Scholar]
  3. Berger-Sweeney J., Hohmann C. F. Behavioral consequences of abnormal cortical development: insights into developmental disabilities. Behav Brain Res. 1997 Jul;86(2):121–142. doi: 10.1016/s0166-4328(96)02251-6. [DOI] [PubMed] [Google Scholar]
  4. Berman R. F., Hannigan J. H., Sperry M. A., Zajac C. S. Prenatal alcohol exposure and the effects of environmental enrichment on hippocampal dendritic spine density. Alcohol. 1996 Mar-Apr;13(2):209–216. doi: 10.1016/0741-8329(95)02049-7. [DOI] [PubMed] [Google Scholar]
  5. Black J. E., Sirevaag A. M., Greenough W. T. Complex experience promotes capillary formation in young rat visual cortex. Neurosci Lett. 1987 Dec 29;83(3):351–355. doi: 10.1016/0304-3940(87)90113-3. [DOI] [PubMed] [Google Scholar]
  6. Colacitti C., Sancini G., DeBiasi S., Franceschetti S., Caputi A., Frassoni C., Cattabeni F., Avanzini G., Spreafico R., Di Luca M. Prenatal methylazoxymethanol treatment in rats produces brain abnormalities with morphological similarities to human developmental brain dysgeneses. J Neuropathol Exp Neurol. 1999 Jan;58(1):92–106. doi: 10.1097/00005072-199901000-00010. [DOI] [PubMed] [Google Scholar]
  7. DIAMOND M. C., KRECH D., ROSENZWEIG M. R. THE EFFECTS OF AN ENRICHED ENVIRONMENT ON THE HISTOLOGY OF THE RAT CEREBRAL CORTEX. J Comp Neurol. 1964 Aug;123:111–120. doi: 10.1002/cne.901230110. [DOI] [PubMed] [Google Scholar]
  8. Esclaire F., Kisby G., Spencer P., Milne J., Lesort M., Hugon J. The Guam cycad toxin methylazoxymethanol damages neuronal DNA and modulates tau mRNA expression and excitotoxicity. Exp Neurol. 1999 Jan;155(1):11–21. doi: 10.1006/exnr.1998.6962. [DOI] [PubMed] [Google Scholar]
  9. Ferchmin P. A., Bennett E. L. Direct contact with enriched environment is required to alter cerebral weights in rats. J Comp Physiol Psychol. 1975 Jan;88(1):360–367. doi: 10.1037/h0076175. [DOI] [PubMed] [Google Scholar]
  10. Fischer M. H., Welker C., Waisman H. A. Generalized growth retardation in rats induced by prenatal exposure to methylazoxymethyl acetate. Teratology. 1972 Apr;5(2):223–232. doi: 10.1002/tera.1420050212. [DOI] [PubMed] [Google Scholar]
  11. Garman R. H., Fix A. S., Jortner B. S., Jensen K. F., Hardisty J. F., Claudio L., Ferenc S. Methods to identify and characterize developmental neurotoxicity for human health risk assessment. II: neuropathology. Environ Health Perspect. 2001 Mar;109 (Suppl 1):93–100. doi: 10.1289/ehp.01109s193. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Haddad R. K., Rabe A., Dumas R. Comparison of effects of methylazoxymethanol acetate on brain development in different species. Fed Proc. 1972 Sep-Oct;31(5):1520–1523. [PubMed] [Google Scholar]
  13. Horner C. H., O'Regan M., Arbuthnott E. Neural plasticity of the hippocampal (CA1) pyramidal cell--quantitative changes in spine density following handling and injection for drug testing. J Anat. 1991 Feb;174:229–238. [PMC free article] [PubMed] [Google Scholar]
  14. Jones T. A., Hawrylak N., Greenough W. T. Rapid laminar-dependent changes in GFAP immunoreactive astrocytes in the visual cortex of rats reared in a complex environment. Psychoneuroendocrinology. 1996 Feb;21(2):189–201. doi: 10.1016/0306-4530(95)00041-0. [DOI] [PubMed] [Google Scholar]
  15. Juraska J. M., Greenough W. T., Elliott C., Mack K. J., Berkowitz R. Plasticity in adult rat visual cortex: an examination of several cell populations after differential rearing. Behav Neural Biol. 1980 Jun;29(2):157–167. doi: 10.1016/s0163-1047(80)90482-3. [DOI] [PubMed] [Google Scholar]
  16. Juraska J. M. The development of pyramidal neurons after eye opening in the visual cortex of hooded rats: a quantitative study. J Comp Neurol. 1982 Dec 1;212(2):208–213. doi: 10.1002/cne.902120210. [DOI] [PubMed] [Google Scholar]
  17. Karni A., Meyer G., Jezzard P., Adams M. M., Turner R., Ungerleider L. G. Functional MRI evidence for adult motor cortex plasticity during motor skill learning. Nature. 1995 Sep 14;377(6545):155–158. doi: 10.1038/377155a0. [DOI] [PubMed] [Google Scholar]
  18. Kempermann G., Kuhn H. G., Gage F. H. More hippocampal neurons in adult mice living in an enriched environment. Nature. 1997 Apr 3;386(6624):493–495. doi: 10.1038/386493a0. [DOI] [PubMed] [Google Scholar]
  19. Kisby G. E., Kabel H., Hugon J., Spencer P. Damage and repair of nerve cell DNA in toxic stress. Drug Metab Rev. 1999 Aug;31(3):589–618. doi: 10.1081/dmr-100101937. [DOI] [PubMed] [Google Scholar]
  20. Klintsova A. Y., Goodlett C. R., Greenough W. T. Therapeutic motor training ameliorates cerebellar effects of postnatal binge alcohol. Neurotoxicol Teratol. 2000 Jan-Feb;22(1):125–132. doi: 10.1016/s0892-0362(99)00052-5. [DOI] [PubMed] [Google Scholar]
  21. Kolb B., Whishaw I. Q. Brain plasticity and behavior. Annu Rev Psychol. 1998;49:43–64. doi: 10.1146/annurev.psych.49.1.43. [DOI] [PubMed] [Google Scholar]
  22. Lewin R. Is your brain really necessary? Science. 1980 Dec 12;210(4475):1232–1234. doi: 10.1126/science.7434023. [DOI] [PubMed] [Google Scholar]
  23. Maguire E. A., Gadian D. G., Johnsrude I. S., Good C. D., Ashburner J., Frackowiak R. S., Frith C. D. Navigation-related structural change in the hippocampi of taxi drivers. Proc Natl Acad Sci U S A. 2000 Apr 11;97(8):4398–4403. doi: 10.1073/pnas.070039597. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Ohta R., Matsumoto A., Sato M., Shirota M., Nagao T., Tohei A., Taya K. Postnatal behavior in hatano high- and low-avoidance rats following prenatal exposure to low-dose methylazoxymethanol. Neurotoxicol Teratol. 2000 May-Jun;22(3):405–413. doi: 10.1016/s0892-0362(99)00082-3. [DOI] [PubMed] [Google Scholar]
  25. Pomeroy S. L., Kim J. Y. Biology and pathobiology of neuronal development. Ment Retard Dev Disabil Res Rev. 2000;6(1):41–46. doi: 10.1002/(SICI)1098-2779(2000)6:1<41::AID-MRDD6>3.0.CO;2-V. [DOI] [PubMed] [Google Scholar]
  26. Rema V., Ebner F. F. Effect of enriched environment rearing on impairments in cortical excitability and plasticity after prenatal alcohol exposure. J Neurosci. 1999 Dec 15;19(24):10993–11006. doi: 10.1523/JNEUROSCI.19-24-10993.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Rodier P. M. Developing brain as a target of toxicity. Environ Health Perspect. 1995 Sep;103 (Suppl 6):73–76. doi: 10.1289/ehp.95103s673. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Rosenzweig M. R., Bennett E. L. Psychobiology of plasticity: effects of training and experience on brain and behavior. Behav Brain Res. 1996 Jun;78(1):57–65. doi: 10.1016/0166-4328(95)00216-2. [DOI] [PubMed] [Google Scholar]
  29. Sirevaag A. M., Greenough W. T. Plasticity of GFAP-immunoreactive astrocyte size and number in visual cortex of rats reared in complex environments. Brain Res. 1991 Feb 1;540(1-2):273–278. doi: 10.1016/0006-8993(91)90517-y. [DOI] [PubMed] [Google Scholar]
  30. Tamaru M., Hirata Y., Nagayoshi M., Matsutani T. Brain changes in rats induced by prenatal injection of methylazoxymethanol. Teratology. 1988 Feb;37(2):149–157. doi: 10.1002/tera.1420370208. [DOI] [PubMed] [Google Scholar]
  31. Turner A. M., Greenough W. T. Differential rearing effects on rat visual cortex synapses. I. Synaptic and neuronal density and synapses per neuron. Brain Res. 1985 Mar 11;329(1-2):195–203. doi: 10.1016/0006-8993(85)90525-6. [DOI] [PubMed] [Google Scholar]
  32. Volkmar F. R., Greenough W. T. Rearing complexity affects branching of dendrites in the visual cortex of the rat. Science. 1972 Jun 30;176(4042):1445–1447. doi: 10.1126/science.176.4042.1445. [DOI] [PubMed] [Google Scholar]
  33. Volpe J. J. Overview: normal and abnormal human brain development. Ment Retard Dev Disabil Res Rev. 2000;6(1):1–5. doi: 10.1002/(SICI)1098-2779(2000)6:1<1::AID-MRDD1>3.0.CO;2-J. [DOI] [PubMed] [Google Scholar]
  34. Wainwright P. E., Lévesque S., Krempulec L., Bulman-Fleming B., McCutcheon D. Effects of environmental enrichment on cortical depth and Morris-maze performance in B6D2F2 mice exposed prenatally to ethanol. Neurotoxicol Teratol. 1993 Jan-Feb;15(1):11–20. doi: 10.1016/0892-0362(93)90040-u. [DOI] [PubMed] [Google Scholar]
  35. Wallace C. S., Kilman V. L., Withers G. S., Greenough W. T. Increases in dendritic length in occipital cortex after 4 days of differential housing in weanling rats. Behav Neural Biol. 1992 Jul;58(1):64–68. doi: 10.1016/0163-1047(92)90937-y. [DOI] [PubMed] [Google Scholar]
  36. van Praag H., Kempermann G., Gage F. H. Neural consequences of environmental enrichment. Nat Rev Neurosci. 2000 Dec;1(3):191–198. doi: 10.1038/35044558. [DOI] [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES