Abstract
This article is a review of the use of quantitative (and qualitative) structure-activity relationships (QSARs and SARs) by regulatory agencies and authorities to predict acute toxicity, mutagenicity, carcinogenicity, and other health effects. A number of SAR and QSAR applications, by regulatory agencies and authorities, are reviewed. These include the use of simple QSAR analyses, as well as the use of multivariate QSARs, and a number of different expert system approaches.
Full Text
The Full Text of this article is available as a PDF (190.5 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ashby J., Tennant R. W. Definitive relationships among chemical structure, carcinogenicity and mutagenicity for 301 chemicals tested by the U.S. NTP. Mutat Res. 1991 May;257(3):229–306. doi: 10.1016/0165-1110(91)90003-e. [DOI] [PubMed] [Google Scholar]
- Basketter D. A., Roberts D. W., Cronin M., Scholes E. W. The value of the local lymph node assay in quantitative structure-activity investigations. Contact Dermatitis. 1992 Sep;27(3):137–142. doi: 10.1111/j.1600-0536.1992.tb05241.x. [DOI] [PubMed] [Google Scholar]
- Contrera J. F., Jacobs A. C., DeGeorge J. J. Carcinogenicity testing and the evaluation of regulatory requirements for pharmaceuticals. Regul Toxicol Pharmacol. 1997 Apr;25(2):130–145. doi: 10.1006/rtph.1997.1085. [DOI] [PubMed] [Google Scholar]
- Cronin M. T., Basketter D. A. Multivariate QSAR analysis of a skin sensitization database. SAR QSAR Environ Res. 1994;2(3):159–179. doi: 10.1080/10629369408029901. [DOI] [PubMed] [Google Scholar]
- Cronin Mark T. D., Walker John D., Jaworska Joanna S., Comber Michael H. I., Watts Christopher D., Worth Andrew P. Use of QSARs in international decision-making frameworks to predict ecologic effects and environmental fate of chemical substances. Environ Health Perspect. 2003 Aug;111(10):1376–1390. doi: 10.1289/ehp.5759. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Franke R., Gruska A., Giuliani A., Benigni R. Prediction of rodent carcinogenicity of aromatic amines: a quantitative structure-activity relationships model. Carcinogenesis. 2001 Sep;22(9):1561–1571. doi: 10.1093/carcin/22.9.1561. [DOI] [PubMed] [Google Scholar]
- Frasch H. Frederick. A random walk model of skin permeation. Risk Anal. 2002 Apr;22(2):265–276. doi: 10.1111/0272-4332.00024. [DOI] [PubMed] [Google Scholar]
- Gerner I., Zinke S., Graetschel G., Schlede E. Development of a decision support system for the introduction of alternative methods into local irritancy/corrosivity testing strategies. Creation of fundamental rules for a decision support system. Altern Lab Anim. 2000 Sep-Oct;28(5):665–698. doi: 10.1177/026119290002800505. [DOI] [PubMed] [Google Scholar]
- Hatch F. T., Knize M. G., Colvin M. E. Extended quantitative structure-activity relationships for 80 aromatic and heterocyclic amines: structural, electronic, and hydropathic factors affecting mutagenic potency. Environ Mol Mutagen. 2001;38(4):268–291. doi: 10.1002/em.10028. [DOI] [PubMed] [Google Scholar]
- Heidorn Christian J. A., Rasmussen Kirsten, Hansen Bjørn G., Nørager Ole, Allanou Remi, Seynaeve René, Scheer Stefan, Kappes Dag, Bernasconi Roberta. IUCLID: an information management tool for existing chemicals and biocides. J Chem Inf Comput Sci. 2003 May-Jun;43(3):779–786. doi: 10.1021/ci0202786. [DOI] [PubMed] [Google Scholar]
- Jones T. D., Easterly C. E. A RASH analysis of National Toxicology Program data: predictions for 30 compounds to be tested in rodent carcinogenesis experiments. Environ Health Perspect. 1996 Oct;104 (Suppl 5):1017–1030. doi: 10.1289/ehp.96104s51017. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Klopman G., Rosenkranz H. Structure-activity relations: maximizing the usefulness of mutagenicity and carcinogenicity databases. Environ Health Perspect. 1991 Dec;96:67–75. doi: 10.1289/ehp.919667. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kulkarni A., Hopfinger A. J., Osborne R., Bruner L. H., Thompson E. D. Prediction of eye irritation from organic chemicals using membrane-interaction QSAR analysis. Toxicol Sci. 2001 Feb;59(2):335–345. doi: 10.1093/toxsci/59.2.335. [DOI] [PubMed] [Google Scholar]
- MacDonald D., Breton R., Sutcliffe R., Walker J. Uses and limitations of quantitative structure-activity relationships (QSARs) to categorize substances on the Canadian domestic substance list as persistent and/or bioaccumulative, and inherently toxic to non-human organisms. SAR QSAR Environ Res. 2002 Mar;13(1):43–55. doi: 10.1080/10629360290002082. [DOI] [PubMed] [Google Scholar]
- Matthews E. J., Benz R. D., Contrera J. F. Use of toxicological information in drug design. J Mol Graph Model. 2000 Dec;18(6):605–615. doi: 10.1016/s1093-3263(00)00119-4. [DOI] [PubMed] [Google Scholar]
- Matthews E. J., Contrera J. F. A new highly specific method for predicting the carcinogenic potential of pharmaceuticals in rodents using enhanced MCASE QSAR-ES software. Regul Toxicol Pharmacol. 1998 Dec;28(3):242–264. doi: 10.1006/rtph.1998.1259. [DOI] [PubMed] [Google Scholar]
- Moss G. P., Dearden J. C., Patel H., Cronin M. T. D. Quantitative structure-permeability relationships (QSPRs) for percutaneous absorption. Toxicol In Vitro. 2002 Jun;16(3):299–317. doi: 10.1016/s0887-2333(02)00003-6. [DOI] [PubMed] [Google Scholar]
- Potts R. O., Guy R. H. Predicting skin permeability. Pharm Res. 1992 May;9(5):663–669. doi: 10.1023/a:1015810312465. [DOI] [PubMed] [Google Scholar]
- Prival M. J. Evaluation of the TOPKAT system for predicting the carcinogenicity of chemicals. Environ Mol Mutagen. 2001;37(1):55–69. doi: 10.1002/1098-2280(2001)37:1<55::aid-em1006>3.0.co;2-5. [DOI] [PubMed] [Google Scholar]
- Purdy R. A mechanism-mediated model for carcinogenicity: model content and prediction of the outcome of rodent carcinogenicity bioassays currently being conducted on 25 organic chemicals. Environ Health Perspect. 1996 Oct;104 (Suppl 5):1085–1094. doi: 10.1289/ehp.96104s51085. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Richard A. M. Commercial toxicology prediction systems: a regulatory perspective. Toxicol Lett. 1998 Dec 28;102-103:611–616. doi: 10.1016/s0378-4274(98)00257-4. [DOI] [PubMed] [Google Scholar]
- Richardt A. M., Benigni R. AI and SAR approaches for predicting chemical carcinogenicity: survey and status report. SAR QSAR Environ Res. 2002 Mar;13(1):1–19. doi: 10.1080/10629360290002055. [DOI] [PubMed] [Google Scholar]
- Walker J. D., Carlsen L., Hulzebos E., Simon-Hettich B. Global government applications of analogues, SARs and QSARs to predict aquatic toxicity, chemical or physical properties, environmental fate parameters and health effects of organic chemicals. SAR QSAR Environ Res. 2002 Oct;13(6):607–616. doi: 10.1080/1062936021000020062. [DOI] [PubMed] [Google Scholar]
- Walker J. D. Chemical selection by the Interagency Testing Committee: use of computerized substructure searching to identify chemical groups for health effects, chemical fate and ecological effects testing. Sci Total Environ. 1991 Dec;109-110:691–700. doi: 10.1016/0048-9697(91)90223-2. [DOI] [PubMed] [Google Scholar]
- Woo Y. T., Lai D. Y., Argus M. F., Arcos J. C. Development of structure-activity relationship rules for predicting carcinogenic potential of chemicals. Toxicol Lett. 1995 Sep;79(1-3):219–228. doi: 10.1016/0378-4274(95)03373-s. [DOI] [PubMed] [Google Scholar]
- Zinke Stephan, Gerner Ingrid, Schlede Eva. Evaluation of a rule base for identifying contact allergens by using a regulatory database: Comparison of data on chemicals notified in the European Union with "structural alerts" used in the DEREK expert system. Altern Lab Anim. 2002 May-Jun;30(3):285–298. doi: 10.1177/026119290203000305. [DOI] [PubMed] [Google Scholar]
- el-Masri Hisham A., Mumtaz Moiz M., Choudhary Gangadhar, Cibulas William, De Rosa Christopher T. Applications of computational toxicology methods at the Agency for Toxic Substances and Disease Registry. Int J Hyg Environ Health. 2002 Mar;205(1-2):63–69. doi: 10.1078/1438-4639-00130. [DOI] [PubMed] [Google Scholar]